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INTRODUCTION

The side-chain conformation prediction problem is an integral

component of protein structure determination, protein structure

prediction, and protein design. In single-site mutants and in closely

related proteins, the backbone often changes little and structure pre-

diction can be accomplished by accurate side-chain prediction.1 In

docking of ligands and other proteins, taking into account changes

in side-chain conformation is often critical to accurate structure pre-

dictions of complexes.2–4 Even in methods that take account of

changes in backbone conformation, one step in the process is recal-

culation of side-chain conformation or ‘‘repacking.’’5 Because many

backbone conformations may be sampled in model refinements,

side-chain prediction must also be very fast. In protein design, as

changes in the sequence are proposed by Monte Carlo steps or other

algorithms, conformations of side chains need to be predicted accu-

rately to determine whether the change is favorable or not.6–8

Most side-chain prediction methods are based on a sample space

that depends on a rotamer library, which is a statistical clustering of

observed side-chain conformations in known structures.9 Such

rotamer libraries can be backbone-independent, lumping all side

chains together regardless of the local backbone conformation,10 or

backbone-dependent, such that frequencies and dihedral angles vary

with the backbone dihedral angles / and w.11,12 An alternative to

using statistical rotamer libraries is to use conformer libraries, which

are samples of side chains from known structures, usually in the

form of Cartesian coordinates, thus accounting for bond length,

bond angle, and dihedral angle variability.13–16 Once a search space

in the form of rotamers (and samples around rotamers in some

cases) or conformers is defined, a scoring function is required to

evaluate the suitability of the sampled conformations. These may

include the negative logarithm of the observed rotamer library fre-

quencies,17–20 van der Waals or hard sphere steric interactions of

side chains with other side chains or the backbone, and sometimes

electrostatic, hydrogen bonding, and solvation terms.20–24 Many
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ABSTRACT

Determination of side-chain conformations is an

important step in protein structure prediction

and protein design. Many such methods have

been presented, although only a small number

are in widespread use. SCWRL is one such

method, and the SCWRL3 program (2003) has

remained popular because of its speed, accuracy,

and ease-of-use for the purpose of homology

modeling. However, higher accuracy at compara-

ble speed is desirable. This has been achieved in

a new program SCWRL4 through: (1) a new

backbone-dependent rotamer library based on

kernel density estimates; (2) averaging over sam-

ples of conformations about the positions in the

rotamer library; (3) a fast anisotropic hydrogen

bonding function; (4) a short-range, soft van der

Waals atom–atom interaction potential; (5) fast

collision detection using k-discrete oriented poly-

topes; (6) a tree decomposition algorithm to

solve the combinatorial problem; and (7) optimi-

zation of all parameters by determining the

interaction graph within the crystal environment

using symmetry operators of the crystallographic

space group. Accuracies as a function of electron

density of the side chains demonstrate that side

chains with higher electron density are easier to

predict than those with low-electron density and

presumed conformational disorder. For a testing

set of 379 proteins, 86% of v1 angles and 75% of

v112 angles are predicted correctly within 408 of

the X-ray positions. Among side chains with

higher electron density (25–100th percentile),

these numbers rise to 89 and 80%. The new pro-

gram maintains its simple command-line inter-

face, designed for homology modeling, and is

now available as a dynamic-linked library for

incorporation into other software programs.
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search algorithms have been applied, including cyclic

optimization of single residues or pairs of residues,11,16

Monte Carlo,5,18,25 dead-end elimination (DEE),26,27

self-consistent mean field optimization,28 integer pro-

gramming,29 and graph decomposition.17,30,31 These

methods vary in how fast they can solve the combi-

natorial problem, and whether they guarantee a global

minimum of the given energy function or instead search

for a low energy without such a guarantee. In general,

such a guarantee is not necessary, given the approximate

nature of the energy functions, and it is the overall pre-

diction accuracy and speed that are more important

features of a prediction method. In recent years, it has

become clear that some flexibility around rotameric

positions15,16,32 and more sophisticated energy func-

tions20,33 are needed for improved side-chain packing

and prediction.

SCWRL3 is one of the most widely used programs of

its type with 2986 licenses in 72 countries as of April 30,

2009. It uses a backbone-dependent rotamer library,12 a

simple energy function based on the library rotamer fre-

quencies and a purely repulsive steric energy term, and a

graph decomposition to solve the combinatorial packing

problem.30 It has a number of features that have made it

widely used. The first of these is speed, which has

enabled the program to be used on a number of web

servers that predict protein structure from sequence-

structure alignments34 and may perform many hundreds

of predictions per day. The second is accuracy. At the

time of its publication, it was one of the most accurate

side-chain prediction methods. However, a number of

other methods have appeared claiming higher accu-

racy,15,18,20,35 although often at much longer CPU

times. The third feature of SCWRL3 is usability. The pro-

gram takes input PDB coordinates for the backbone,

optionally a new sequence, and outputs coordinates for

the structure with predicted side chains using the same

residue numbering and chain identifiers as the input

structure. This feature is simple but in fact many if not

most side-chain prediction programs renumber the resi-

dues of the input structure and strip the chain identifiers,

making them difficult to use in homology modeling.

One unfortunate feature of SCWRL3 is that the graph

decomposition method used may not always result in a

combinatorial optimization that can be solved quickly. In

such cases, the program may go on for many hours

instead of finishing in a few seconds, since it lacks any

heuristic method for simplifying the problem and finish-

ing quickly.

In developing a new generation of SCWRL, called

SCWRL4, we had several goals. First, we wanted to

increase the accuracy over SCWRL3 such that SCWRL4’s

accuracy would be comparable or better than programs

developed in the last several years. Second, we wanted to

maintain the speed advantage that SCWRL has over most

similar programs. Third, we wanted to maintain the

usability of the program for homology modeling and

other purposes. As part of this, we wanted to make sure

that the program always solves the structure prediction

problem in a reasonable time, even if the graph is not

sufficiently decomposable. This is accomplished with an

approximation that while not guaranteeing a global mini-

mum of the energy function given the rotamer search

space, does complete the calculation quickly in all cases

tested.

In this article, we describe the development of the

SCWRL4 program for prediction of protein side-chain

conformations. We used many different approaches to ac-

complish the goals described earlier. We have improved

the SCWRL energy function using a new backbone-de-

pendent rotamer library (Shapovalov and Dunbrack, in

preparation) which uses kernel density estimates and ker-

nel regressions to provide rotamer frequencies, dihedral

angles, and variances that vary smoothly as a function of

the backbone dihedral angles / and w. SCWRL4 also

uses a short-range, soft van der Waals interaction poten-

tial between atoms rather than a linear repulsive-only

function used in SCWRL3, as well as an anisotropic

hydrogen bond function similar to that used in Rosetta36

(but using a different functional form that is faster to

evaluate). To account for variation of dihedral angles

around the mean values given in the rotamer library, we

used the approach of Mendes et al.,32 which samples v
angles around the library values and averages the energy

of interaction between rotamers of different side chains

over these samples, resulting in a free-energy-like scoring

function. To determine the interaction graph, as used in

SCWRL3, we implemented a fast method for detecting

collisions (i.e., atom–atom interactions less than some

distance) using k-discrete oriented polytopes (kDOPs).

kDOPs are three-dimensional shapes with faces perpen-

dicular to common fixed axes, such that kDOPs around

two groups of atoms can be rapidly tested for overlap.37

In SCWRL3, we used a graph decomposition method

that broke down the interaction graph of residues into

biconnected components, which overlap by single resi-

dues called articulation points. In most cases, this solves

the graph quickly. However, with a longer range energy

function and sampling about the rotameric dihedral

angles, this is no longer true. We therefore implemented

our own version of a tree decomposition of the graphs,

as suggested by Xu31 for the side-chain prediction prob-

lem. This is almost always successful but in a small num-

ber of cases may still not result in an easily solvable com-

binatorial problem. We therefore added a heuristic pro-

jection of the pairwise energies onto self-energies within

some threshold. This approximation of the full prediction

problem always results in a solution, even if it is not

guaranteed to find the global minimum. Finally, the new

program has been developed as a library, so that its func-

tions can be called easily by other programs such as loop

modeling and protein design.
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METHODS

In Figure 1, we show a flowchart of the basic steps in

SCWRL4 to solve the side-chain prediction problem.

These will be discussed further later. The major steps are

(1) input of data and constructing the side-chain coordi-

nates; (2) calculating energies; (3) graph computation,

with symmetry operators if any; (4) combinatorial opti-

mization via edge decomposition, DEE, and tree decom-

position; and (5) output of the results. SCWRL4 runs on

a command line with a number of required and optional

flags. A number of other options and parameters are

specified in a required configuration file with extension

‘‘.ini,’’ which uses a standard name 5 value format (see

http://en.wikipedia.org/wiki/INI_file).

Input and construction of coordinates

An individual residue position is defined by specifying

four backbone atoms (N, Ca, C, O) in a PDB-format

input file. These individual residue sites can comprise

one or more polypeptide chains, from which the back-

bone dihedral angles / and w are calculated for each res-

idue. For purposes of looking up residues in the rotamer

library, the N-terminal residue / is set to 2608. Similarly

for C-terminal residues, w is set to 608. These values are

those for which there is weak dependence of the rotamer

probabilities on the missing dihedral angle.38 The

Ci21��Ni atom distances are checked to determine

whether there are missing internal residues in a chain.

For each residue, rotamers are read from a new version

of the backbone-dependent rotamer library (Shapovalov

and Dunbrack, in preparation). This rotamer library is

based on a much larger data set, and is derived using

kernel density estimates and kernel regressions. The

rotamer library includes rotamer frequencies and mean

dihedral angles and their standard deviations over a dis-

crete (/, w)-grid. This library offers much greater detail

for nonrotameric degrees of freedom, in particular v2 for

Asn, Asp, His, Phe, Trp, and Tyr and v3 for Glu and Gln.

Optionally SCWRL4 can determine frequencies and dihe-

dral angle parameters by bilinear interpolation from the

four neighboring /, w grid points in the library. For

each v1 rotamer of Ser and Thr, SCWRL4 generates three

rotamers for the hydroxyl hydrogen with v2 dihedral set

to 2608, 1608, and 1808 and the variance set to 108
times the corresponding parameter given in the configu-

ration file. For each v1, v2 rotamer of Tyr, two rotamers

are generated for the hydroxyl hydrogen with v3 dihedral

set to 0 and 1808, which are the values observed in neu-

tron diffraction studies.39 For His, extra rotamers are

created for the singly protonated states (proton on ND1

or NE2). Rotamers that represent positively charged His

can be enabled in the program using an option in the

configuration file.

Side-chain coordinates are built for all rotamers and

for subrotamers about these rotamers used by the flexible

rotamer model (FRM, see later). Subrotamers as used

here are conformations with dihedral angles � one

standard deviation (or a fixed proportion thereof) away

from rotamer values given in the rotamer library. For

subrotamers, only one dihedral at a time differs from the

library value, since we found that allowing multiple devi-

ations did not noticeably improve the accuracy but did

slow the calculation (data not shown). Side chains are

represented in a tree-like structure, so that atoms com-

mon to more than one subrotamer (e.g., same CG posi-

tion for different v2 conformers) are calculated and

stored only once.40 Coordinates are built using a fast

incremental torsion to Cartesian conversion method.41

Because SCWRL4 uses a large number of rotamers and

subrotamers, we implemented a fast collision detection

algorithm based on k-dimensional Discrete Oriented Pol-

ytopes or kDOPs.37 The kDOP algorithm is based on

two key ideas. The first idea is to enclose each geometric

object into a convex polytope of a special kind and use

these as bounding boxes for clash checks. A particular

class of kDOPs is defined by a set of k pairwise noncol-

linear unit vectors, and consists of all convex polytopes

with 2k facets such that any facet is perpendicular to one

of these vectors. Examples are shown in Figure 2. For
Figure 1
Steps in SCWRL4 side-chain conformation prediction.
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instance, if k 5 3, these could be the x, y, and z-axes, so

that all bounding boxes are rectangular parallelepipeds

whose faces are perpendicular to the Cartesian axes. The

second key idea is to organize all bounding boxes related

to a particular group of geometric objects as a hierarchy.

These hierarchies can then be used for efficient search of

all possible clashes between individual bounding boxes.

The advantage of using a single set of vectors for

defining the bounding boxes is that two bounding boxes

of the same kDOP class can be efficiently checked for

clashes. As illustrated in Figure 2, this can be accom-

plished by testing for overlaps of the real intervals that

represent their projections across the corresponding basic

axes. Let {ai}
k
i¼1 and {bi}

k
i¼1 be the sets of these intervals

for two kDOPs ‘‘A’’ and ‘‘B’’ respectively. ‘‘A’’ does not

clash with ‘‘B’’ if there exists i [ {1..k} such that min (ai)

> max (bi) or if there exists j [ {1..k} such that min (bj)

> max (aj). If neither of these conditions are met, then

the underlying objects enclosed inside of these two boxes

may clash, but do not necessarily do so. In the case of

atoms, this is to be checked by pairwise distance calcula-

tions of the objects enclosed in the bounding boxes.

Building a kDOP around a geometric object consists of

finding projections of the object onto the basic axes.

Both the van der Waals function and the hydrogen bond

potentials described in the next section have a certain

boundary distance beyond which the potential is zero.

These distances are used to represent each atom as a

sphere with a certain radius. To build a bounding box

around a whole side chain, each atom is enclosed into a

kDOP and then the elementary shells are merged. The

rotamers and subrotamers of a side chain can be

enclosed into a single kDOP, such that all residue–residue

interactions can be checked very quickly. In SCWRL4, we

use four basic axes and construct bounding boxes around

individual atoms, backbone atoms of each residue, parts

of each side chain, individual rotamers (i.e. entire set of

its subrotamers) and every residue (all rotamers). The

basic axes form a tetrahedral geometry:

~e1;2 ¼
~ez �

ffiffiffi
2
p

~exffiffiffi
3
p ~e3;4 ¼

�~ez �
ffiffiffi
2
p

~eyffiffiffi
3
p

Using these four axes results in somewhat faster cal-

culations, by about 15%, than using three axes along the

x-, y-, and z-axes, despite some overhead involved in

calculating the projections.

Calculation of self-energies and pairwise
energies via modified FRM

SCWRL4 uses both a rigid rotamer model (RRM), as

in SCWRL3, and a FRM.32 In the RRM, the total energy

of the system is expressed as:

EðrÞ ¼
XN
i¼1

Eself ðriÞ þ
XN�1

i¼1

XN
j¼iþ1

Epairðri; rjÞ

where the vector r specifies a single rotamer for each of

N residues in the system. In this case, the self-energy of

each rotamer is:

Eself ðriÞ ¼ �kilog
pðriÞ

pðrmaxÞ
þ EframeðriÞ

where the first term expresses the rotamer energy relative

to the most populated rotamer, rmax, given the backbone

dihedrals / and w of residue i and the frame term

expresses interaction of the side chain with the backbone

and any ligand or other fixed atoms present. We allow

the value of the constant in front of the log term to be

residue-type dependent.

In contrast to SCWRL3, in SCWRL4 the frame and

pairwise rotamer energies consist of repulsive and attrac-

tive van der Waals terms as well as a hydrogen bonding

term. The repulsive van der Waals term is the same as

the piecewise linear term used in SCWRL3, but is com-

bined with a short-range attractive potential as follows. If

rij is the sum of the hard-sphere radii of atoms i and j

and Eij is
ffiffiffiffiffiffiffiffi
EiEj

p
, where the Ei values are the Emin values

from the CHARMM param19 potential,42 and d is the

distance between the two atoms, then

EvdwðdÞ ¼

10 if
d

rij

� 0:8254

57:273 1� d

rij

� �
if 0:8254 � d

rij

� 1

Eij 10� 9
d

rij

� �57:273
9Eij

�Eij if 1 <
d

rij

<
10

9

Eij

4
9
d

rij

� 10

� �2

�Eij if
10

9
� d

rij

<
4

3

0 if
d

rij

� 4

3

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

Figure 2
k-Dimensional oriented polytopes (kDOPs). Left: Examples of kDOPs

in the plane (k 5 2, 3, 4) and in three dimensions (k 5 3, 4). Right:

Overlap test for kDOP A (black) and kDOP B (gray). The objects

enclosed within the kDOPs may clash if one of the conditions shown is

satisfied.
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This potential is shown in Figure 3 along with the

standard Lennard–Jones potential with the same Eij and

Rij. The hard-sphere radii were manually optimized for

the training set accuracies. The minimum energy occurs

at rmin ¼ 10
9
rij ¼ 1:11rij which is close to the standard

Lennard–Jones parameterization in which the minimum

occurs at rmin 5 21/6rij 5 1.12rij. The parameters are

given in Supporting Information.

The hydrogen bonding term in SCWRL4 is similar to

the one used in Rosetta,36 although it is parameterized

in a different way, as shown in Figure 4. We define d in

this case as the distance between a polar hydrogen (HN-

or HO-) and a hydrogen bond acceptor (oxygen), ~n as a

unit vector from O acceptor to H, ~e0 as a unit vector

along the covalent bond from the hydrogen bond donor

heavy atom D to H, and two unit vectors ~e1 and ~e2 from

the hydrogen bond acceptor O toward the middle of the

oxygen lone-pair electron clouds. For carbonyl oxygen,

these two vectors are 1208 apart from the double bond

and coplanar with the carbonyl carbon substituents. For

hydroxyl oxygen, these two vectors are 109.58 from each

other and from the other two oxygen substituents (H

and C), forming a tetrahedral arrangement. The hydro-

gen bond function is evaluated first for ~e1, and if no

hydrogen bond is found, then for ~e2. For ~e1, the weight w

for the hydrogen bond is defined as:

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

d � ðd � d0Þ2Þðcosa� cosamaxÞðcosb� cosbmaxÞ
q

rd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cosamaxÞð1� cosbmaxÞ

p

where a ¼ cos�1ð�~n � ~e1Þ is the angle between the D��H

bond and the H. . .O vector and b ¼ cos�1ð~n � ~e0Þ is the

angle between the O-lone pair and the O. . .H vector. If

the multiplicand under the square root is negative then

the score is set to zero. The calculation of this score

enables an efficient implementation and together with

the distance d and vector ~n can be done within 30

arithmetic operations, one division, and two square root

evaluations.

After the weight w has been computed, it is used to

derive the final energy of oxygen-hydrogen interaction by

balancing the default van der Waals energy and pure

hydrogen-bond attraction terms:

E½O;H� ¼ ð1� wÞEvdw þ wBqHqO

where qH and qO are the charges from the CHARMM

param19 potential. The formulas mentioned earlier

include five atom-independent coefficients: d0, rd, amax,

bmax, B. The values of these coefficients were optimized

on the training set proteins and are given in Supporting

Information.

Using single rotamers sometimes results in poor pack-

ing predictions, due to fluctuations in the dihedral angles

and imprecise representations of the backbone in homol-

ogy modeling. We investigated the use of subrotamers,

which we define as conformations that differ in one or

more dihedral angles by one standard deviation (or some

constant times this value) from the mean values given in

the rotamer library:

vi ! fvi; vi � di; vi þ dig

If we allowed variations in all dihedral angles in this

manner, treating the subrotamers as additional rotamers

resulted in intractable calculations using the graph

decomposition algorithm used in SCWRL3. Even with

the tree decomposition of Xu,31 implemented in

SCWRL4 (see later), the calculations often remained

Figure 3
SCWRL4 van der Waals potential. The van der Waals potential used in

SCWRL4 is shown (solid line) with a standard Lennard–Jones 6–12

potential (dotted line) with Eij 5 1.

Figure 4
Hydrogen bond potential. Interaction of hydrogen bond acceptor O and

hydrogen bond donor, D. Unit vector ~n is the vector from atom O to

atom H. Unit vectors ~e1 and ~e2 are placed from atom O along each

lone pair of electrons. Unit vector ~e0 connects the hydrogen bond donor

D to the hydrogen atom. a ¼ cos�1ð�~n � ~e1Þ is the angle between the

D��H bond and the H. . .O vector and b ¼ cos�1ð~n � ~e0Þ is the angle

between the O-lone pair and the O. . .H vector.

Side-Chain Prediction with SCWRL4
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intractable. So we implemented the FRM of Mendes

et al.,32 in which the subrotamers are integrated to pro-

duce an approximate free energy using the Kirkwood

superposition approximation43:

AðrÞ ¼
XN
i¼1

Aself ðriÞ þ
XN�1

i¼1

XN
j¼iþ1

Apairðri; rjÞ

We treat the first term as the ‘‘self-free energy’’ and the

second term as the ‘‘pairwise free energy.’’ Aself(ri) and

Apair(ri,rj) are defined as:

Aself ðriÞ ¼ �kilog
pðriÞ

pðrmaxÞ

� �

� Tilog
Xn
si¼1

exp
�ðEframeðri; siÞÞ

Ti

� �

Apairðri; rjÞ ¼ �Tij log
X
si¼1;n

X
sj¼1;m

exp � Eframeðri; siÞ þ Eframeðrj ; sjÞ þ Epairðri; si; rj ; sjÞ
Tij

� �
� AframeðriÞ � AframeðrjÞ

The terms Eframe(ri,si) and Aframe(ri) contain only the

van der Waals and hydrogen bond energies. In our

implementation, each residue type has a separately opti-

mized temperature, and for the pairwise free energy, Tij
5 (Ti 1 Tj)/2.

Graph construction

As with SCWRL3, some rotamers with high self-energy

are removed from the calculation, since they are very

unlikely to be part of the predicted structure. These

rotamers are marked as inactive. In SCWRL3, rotamers

with self-energy above a certain residue-independent

bound were inactivated. However, it sometimes happens

that all rotamers have self-energy above this bound. In

this case all rotamers were reactivated. In SCWRL4, we

replaced this heuristic by making the bound relative to

the lowest energy rotamer for each residue. This

approach guarantees that at least one rotamer will

remain active. After some study the value of this thresh-

old was set to 30. The exact value of the threshold can

be customized through the configuration file.

Before the graph is constructed, disulfide bonds are

resolved. SCWRL4 uses the same criterion as SCWRL3 to

identify if two cysteine side chains can form a disulfide

bond, but introduces a new procedure for resolving

ambiguities. An ambiguity occurs when more than one

rotamer of a particular cysteine residue can form a disul-

fide bond or when one rotamer can form disulfide bonds

with more than one other cysteine side chain. To select a

particular collision-free combination of disulfide bonds,

SCWRL4 finds the minimum total energy out of all pos-

sible combinations of feasible disulfide bonds. To do this,

we use an objective function in the form:

U½h� ¼
X
a

hðaÞEðaÞ

þ
X
b;c

ChðbÞhðcÞ; if b and c are mutually exclusive

0; otherwise

(

where the summations run over all possible disulfide

bonds, C is a large positive constant and h is a binary

function that evaluates to one if a particular disulfide

bond is switched on and to zero otherwise. The func-

tional above is of the same form as the one used to com-

pute the total energy of rotamer assignment. Therefore

we can minimize it for function h via the same optimiza-

tion procedure. Doing this yields, a list of the optimal

disulfide bonds that do not have collisions. If for a par-

ticular cysteine residue one of the rotamers is part of an

optimal disulfide bond then all other rotamers are inacti-

vated for that residue. Energies of interaction of cysteines

in disulfides are added to the self-energies of rotamers of

other side chains within interacting distance.

SCWRL uses an interaction graph to represent the side-

chain placement problem.17,30 In this graph, vertices

represent residues while edges between vertices indicate

that at least one rotamer of one residue has a nonzero

interaction with rotamers from another residue con-

nected by the edge. For a single protein or protein com-

plex, the graph is constructed by checking for overlap of

the kDOP around whole residues. If at least one rotamer

or subrotamer of one residue can interact with nonzero

energy with a rotamer or subrotamer of another residue,

then an edge is added to the graph between the vertices

in the graph representing these residues.

SCWRL4 is able to model side chains in symmetric

complexes using symmetry operators. These rotation-

translation operators can be generated from the CRYST1

record in the input PDB file or specified explicitly by the

user in a separate input file. For crystals, if the input

PDB file contains the asymmetric unit, all residues in

asymmetric units that may contact the input coordinates

are constructed, as described previously.44 Bounding

boxes are constructed around the residues, rotamers, sub-

rotamers, and atoms of the symmetry copies. Interactions

between atoms in the input structure and its side chains

and atoms in the symmetry copies and their side chains

are determined. If side chains in the input structure
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interact with the backbone or ligands of the symmetry

copies, then the static frame energies of these residues

are modified accordingly. If the side chains of the input

structure interact with the side chains of the symmetry

copies, then an edge is created between the correspond-

ing residues, if it does not already exist. If it does, then

the pairwise energies are modified to account for the

additional interactions between symmetry-related pro-

teins. Thus a residue on one side of a protein may have

an edge with a residue on the other side of a protein

because of symmetry.

Graph solution via tree decomposition

Before the major optimization via dynamic program-

ming is launched the interaction graph undergoes some

preprocessing consisting of edge decomposition and DEE.

Typically, this eliminates a significant number of rotamers

as well as some edges and nodes. Because edges were

formed based on overlapping of bounding boxes some of

them may contain only zeros as pairwise rotamer–rotamer

energies. If this is the case or if the actual energies of inter-

actions are very close to zero then the edge is removed.

Edge decomposition removes edges that can be approxi-

mated as the sum over single-residue energies. If this rep-

resentation is feasible within a certain threshold then the

corresponding self-energies are modified and the edge is

removed. With larger thresholds, more edges may be

removed. In this preprocessing stage, the threshold is set

to a very small value, e 5 0.02 kcal/mol.

The pairwise energies of two residues, Epair(ri,rj), in the

RRM or free energies, Apair(ri,rj), in the FRM, may be

represented by a matrix of real numbers ekl for rotamers

k 5 1. . .m and l 5 1. . .n. Edge decomposition consists

of finding two sets of real numbers {ak}
m
k¼1 and {bl}

n
l¼1

which minimize the average deviation:

d ¼
X
k¼1;m

X
l¼1;n

ðak þ bl � eklÞ2

By setting the partial derivatives of d with respect to ak
and bl to zero, we find that these two sets should satisfy

the following equations:

ak ¼ ��b þ
1

n

Xn
l¼1

ekl

bl ¼ ��a þ
1

m

Xm
k¼1

ekl

The initial task is not well defined as its solution is

not unique. Thus adding some value to all ak and sub-

tracting the same value from all bl does not change the

sum ak 1 bl. Therefore, we can set �a to an arbitrary

value. For example, we can set:

�a ¼ �e

2
¼ 1

2mn

X
k¼1;m

X
l¼1;n

ekl

Substituting this value into the second equation, we

find the corresponding value for �b:

�b ¼ �e

2

Using these values, we can determine ak and bl and

evaluate the maximal absolute deviation:

e ¼ max
k;l
jekl � ak � bl j

SCWRL4 checks if this deviation is less than a certain

threshold and if so then it removes the corresponding

edge and modifies the self-energies of the kth rotamer of

residue i and the lth rotamer of residue j:

Eself ðri ¼ kÞ ! Eself ðri ¼ kÞ þ ak

Eself ðri ¼ lÞ ! Eself ðrj ¼ lÞ þ bl

As stated earlier, the initial value of the threshold is

0.02, which enables the algorithm to eliminate almost all

redundant ‘‘near-zero’’ edges. We remove from the graph

those nodes that now have zero edges; its assigned

rotamer is that of lowest Eself.

The next step is to perform DEE that identifies and

removes rotamers that cannot be the part of the global

solution. These rotamers are identified via Goldstein’s cri-

terion that was used in SCWRL3.27 If for a certain resi-

due only one rotamer is left after DEE then that rotamer

is part of the solution. If this residue has adjacent edges

then all pairwise energies with the remaining rotamer are

incorporated into self-energies of the corresponding

rotamers from adjacent residues and these edges are

removed. This makes the residue isolated, which means

that it can be removed from the graph; the self-energy of

its single rotamer is added to the total value of the mini-

mal energy. The edge decomposition and DEE steps are

repeated until nothing further is removed.

As in SCWRL3, the resulting graph may contain sepa-

rated subgraphs or clusters with no edges between them;

each of these clusters is then subject to graph decomposi-

tion. In SCWRL3, the graph decomposition was based on

the determination of biconnected components, which are

subgraphs that cannot be broken into parts by the

removal of a single node. The graph is then a set of

biconnected components connected by single nodes

called articulation points. Tree decomposition can be

viewed as a generalization of graph decomposition based

on biconnected components.31 To see this, we show in
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Figure 5 the same graph as described in the SCWRL3 pa-

per, its decomposition into biconnected components, and

its tree decomposition. The nodes of the graph on the

left are gathered into ‘‘bags’’ which are nodes of the tree

shown on the right. Every node of the graph is repre-

sented in one or more of the bags (definition of Condi-

tion 1 given later). Every edge of the graph on the left is

also represented in one or more of the bags, so that the

two nodes of an edge are together in at least one bag

(Condition 2). Finally, for any vertex of the graph, all

those bags on the tree that contain the vertex form a

connected subtree (Condition 3). More formally:

Definition

A tree-decomposition of a graph G 5 (V,E) is a pair

(T,Z), where T 5 (W,F) is a tree (i.e., a graph with no

cycles) with vertex set W and edge set F and Z 5 {Zw : Zw
( V}w[W is a family of subsets of the set V associated one-

to-one with the vertices of T that satisfies the conditions:

1: [
w2W

Zw ¼ V

2: 8ðu; vÞ 2 E 9w 2 W : u; v 2 Zw

3: 8v 2 V a set of vertices fw 2 W : v 2 Zwg
is connected in T

Because of the one-to-one correspondence between sets

Z and W, we will denote the vertices of tree T as ‘‘bags.’’

Figure 5 shows that Condition 1 is satisfied by this tree

decomposition, since all the residues are present in one or

more bags. Residues c,d illustrate that Condition 2 is satis-

fied since the edge c-d is contained in at least one bag (in

this case, two). Residue h illustrates Condition 3, since all

the bags that contain h are connected in a single subtree.

Typically several different tree-decompositions can be

built for a given graph. The width of a particular tree-

decomposition is the size of the largest bag minus one. For

a given graph a tree-decomposition with the minimal pos-

sible width is the optimal one and its width is called the

treewidth of the graph. This characteristic indicates how

well a graph is tree-decomposable. For example if a graph

has no cycles (and thus is a tree) then its treewidth equals

one, while for a simple cycle the treewidth equals two.

In SCWRL3, the graph solution begins with any bicon-

nected component with a single articulation point by

finding the minimum energy of the biconnected compo-

nent residues for each rotamer of the articulation point.

This energy is then added to the self-energy of the articu-

lation point rotamer, and the rotamers of the bicon-

nected component that achieve this minimum energy are

assigned to the articulation point rotamer. The bicon-

nected component can then be removed, and the process

continues for all biconnected components with one artic-

ulation point in the remaining graph. The combinatorial

problem is thus reduced to the order of the largest bicon-

nected component (i.e., the one with the largest number

of rotamer combinations).

In a tree decomposition, instead of using single nodes to

separate the graph, the graph can be separated by remov-

ing one, two, or more nodes. To see this, in the tree decom-

position in Figure 5, each bag w is broken up into two sets

of residues, Lw and Rw, where the residues in Lw are those

residues in the bag that are shared between the bag and its

immediate parent bag. For each bag in the figure, these are

listed to the left of a vertical bar. The remaining residues in

the bag, the set Rw, are those not in the parent and are

placed to the right of the vertical bar. Each set Lw is a sepa-

ration set of the graph G45; that is removing the residues

in Lw breaks the original residue graph into two or more

separate unconnected graphs. For instance, removing resi-

dues b and c breaks the original graph into two graphs,

one consisting of residue a and the other the rest of the

graph below residues b and c.

Solving for the minimum energy of the graph proceeds

as it does in SCWRL3. Starting at a leaf (a bag with no

children), y, e.g. the one containing ‘‘b c | a’’, find the

lowest energy of the residue(s) in Ry (in this case residue

a) for each combination of the rotamers in Ly (in this

case, residues b and c), saving the corresponding assign-

ment of rotamers of Ry. Then, add these energies to that

rotamer combination in the parent bag, which by the

definition of tree decomposition contains b and c. The

procedure continues up the tree to the parent node of y

(let us call it node z). Again, the minimum energy of all

the rotamer combinations of those residues in Rz is cal-

Figure 5
Tree decomposition as generalization of biconnected component

decomposition. At left, the graph used in the SCWRL3 paper is shown

along with its biconnected component decomposition. At right, a tree

decomposition of the same graph is shown. Residues in blue and green

illustrate conditions 2 and 3 of a tree decomposition being satisfied.

The relevant conditions are shown below the tree decomposition. At

each node of the tree, those residues that are members of set L are

shown to the left of the vertical bar, and those of set R are shown to

the right. Set L consists of those residues shared with the parent of each
node and R the remaining residues of the node.
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culated for each rotamer combination in set Lz. These

energies need to include the energies for b,c calculated

for the child node y. This procedure continues until only

the root bag is left. We provide a more formal descrip-

tion of this procedure later.

The complexity of the solution is associated with

the width of the tree, since all the rotamer combinations of

the residues in each bag need to be enumerated. It is in

general difficult to compute a treewidth and to find the

optimal tree-decomposition, and it has been proved to be

NP-hard for an arbitrary graph.46 For building a tree-

decomposition, we have developed a heuristic algorithm.

Our algorithm is similar to the one suggested by Xu31 who

referred to it as a ‘‘minimal degree heuristic.’’

In the first step, the family of sets Z is built. The input

graph is gradually disassembled using a loop of the fol-

lowing steps:

1. Select any vertex with the minimal number of adjacent

edges.

2. Form a bag of the tree from this vertex and all its

neighbors. The selected vertex we will denote as the

primary vertex of the corresponding bag.

3. Add edges into the graph being processed so that the

neighbors of the selected vertex become a clique (a

subgraph where all nodes have edges to each other).

4. Remove the selected vertex and all adjacent edges

from the graph.

5. Repeat from the first step until there are no more ver-

tices left in the graph.

Thus, we obtain a set of ‘‘bags’’ which represent the

vertices of the tree-decomposition.

Bags are numbered in the order of their construction.

It is important to notice here that within any iteration

the intersection of the bag w with the vertices of the

remaining graph (Sw) consists solely of the neighbors

(Nw) of the initial vertex of the bag concerned, Zw \ Sw
5 Nw. The one-to-one correspondence between vertices

and the bags verifies that the first condition in the defini-

tion of tree decomposition is automatically satisfied.

Also, it is clear that the edges are removed solely during

the bag construction and that when any edge is removed

both adjacent vertices are included into a bag. This guar-

antees that the second condition in the definition of a

tree-decomposition is satisfied.

The second step is to connect the ‘‘bags’’ to obtain a

tree that meets the definition of tree decomposition. This

is done by sequentially fastening these bags to the tree in

the reverse order in which they were constructed. Thus,

the bag that was created last becomes the root of the

tree. The next bag becomes connected to it and thus

becomes its immediate child. For the next bag, there are

two choices for where to attach it. However, the appro-

priate node of the tree-decomposition must meet the

following condition:

 
vertices in the bag

to be added

!
\
 

vertices that are

already on the tree

!

�
 

vertices in the

appropriate bag

!

According to this condition, a set of vertices in the

appropriate node must contain all vertices from the bag

to be added that are already present in the tree.

The tree decomposition just obtained undergoes some

additional minor processing. This consists of two nor-

malization rules, which are applied until they cannot be

applied further: (1) If all vertices associated with some

bag belong to the vertex set of its immediate parent then

this node is removed and all its immediate children are

reconnected to the parent node. (2) If some bag contains

all vertices associated with its parent node then the par-

ent bag is substituted by this bag which thus moves up

one edge towards the root.

The minimum energy rotamer configuration is calcu-

lated as follows. Starting with a leaf node consisting of sets

L and R, the left and right portions of each bag as defined

earlier, we define hLi as the set of all rotamer combinations

of the residues in the set L, and similarly define hRi for set

R. A single member of hLi we denote as l, which is a vector

of rotamer assignments, one rotamer li for each residue i in

the set L; similarly define r for hRi. For a leaf node, we cal-

culate energies for each vector l:

eminðlÞ ¼ min
r2hRi

~Eðl; rÞ

rminðlÞ ¼ arg min
r2hRi

~Eðl; rÞ

where

~Eðl; rÞ ¼ ELðl; rÞ þ ERðrÞ

and

ELðl; rÞ ¼
X
i2L

X
j2R

Epairðli; rjÞ

ERðrÞ ¼
X
j2R

Eself ðrjÞ þ
X
j2R

X
k2R
k>j

Epairðrj ; rkÞ

For fixed rotamers in L, only the pairwise interactions

with rotamers in R are included, while both self and pair-

wise interactions among the rotamers in R must be added.

For the FRM, the values of Aself and Apair are used instead

of Eself and Epair. For an inner node of the tree decomposi-

tion, we need to add in the energies assigned to rotamer

combinations in the node via its children:

~Eðl; rÞ ¼ ELðl; rÞ þ ERðrÞ þ ESðl; rÞ

Side-Chain Prediction with SCWRL4
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where

ESðl; rÞ ¼
X
c2C

eðlcÞ

where the sum is over the children c of the inner node, and

lc is a vector of the rotamers of the residues in the set Lc,

such that these rotamer are in the set {li : i [ L; rj : j [ R}.

By definition of the tree decomposition, all the residues in

Lc are in {L | R}. To calculate the energies of the internal

nodes, the nodes must be traversed in leaf to root order.

Since the root has no parent, it has no set L (equivalently,

its set L is empty). Its energies are given by

~ErootðrÞ ¼ ERðrÞ þ ESðrÞ

In the last part of the algorithm, the nodes of the

tree-decomposition are traversed in the root-to-leaves

order to assemble the global assignment of rotamers for

the cluster being processed. For any node except the root,

we have a local partial solution that lets us obtain an opti-

mal assignment of rotamers of R for any rotamer assign-

ment of rotamers over L. But by construction L belongs to

the parent bag, which means that we can easily retrieve the

optimal assignment over all residues in some bag if we

know the optimal assignment at the parent node. Thus, we

have a recursive procedure that gradually extends an

assignment for the entire cluster starting from the root

node:

eroot ¼ min
r2Rroot

~ErootðrÞ

rroot ¼ arg min
r2Rroot

~ErootðrÞ

For each child c of the root, the optimal assignment of

rotamers to the residues in Rc may be made, given the

assignment of rotamers of the root, and the minimum

energy added to the total:

rc ¼ rminðlcÞ
emin  emin þ ~ERðlc ; rcÞ

where the assignments in lc are already known from rroot.

The rotamers are assigned and the energies updated for

each child of each c, and so on, following from the root to

all leaves in a depth-first search order.

The actual search for the local solution is done via ex-

haustive direct enumeration, which is quite affordable if

the product of rotamer numbers within the correspond-

ing bag is not very large. The number of possible

rotamer assignments over a particular bag we will refer

to as local complexity of the node. The sum of the local

complexities of all nodes gives the overall computational

complexity of the optimization. Typically, tree-decompo-

sitions of smaller width yield lower complexity. To limit

the time required by SCWRL4 for a single rotamer

assignment we introduced an upper bound for the over-

all complexity of 108. If the actual complexity exceeds

this bound then the optimization is treated as not tracta-

ble and SCWRL4 returns to the graph construction step

(edge decomposition and DEE) after doubling the value

of the edge decomposition threshold. This process con-

tinues until a solution is found.

Output of the results

The optimization resolves both the minimal total

energy of the entire model and the corresponding assign-

ment of rotamers. The SCWRL4 executable saves the

resolved optimal conformation of the whole protein

model into PDB file. The corresponding value of the

total energy is printed into the standard output, which

can be redirected to a file for further analysis. If the task

was set up and solved via the API of the SCWRL4 library

then the corresponding workspace with or without modi-

fications can be used in subsequent calculations.

Training and test sets

We constructed a training set of proteins for optimiz-

ing the parameters and procedures, and a separate testing

set for reporting the accuracy of SCWRL4. Because we

wanted to use electron density calculations to estimate

the reliability of side-chain coordinates, we started with

the list of PDB entries with electron densities available

from the Uppsala Electron Density Server,47 generally

those with deposited structure factors. We removed

entries with ligands other than water, so that side chains

could be predicted without requiring charges, hydrogen

positions, or van der Waals radii of ligands. This set was

culled using the PISCES server48,49 at maximum mutual

sequence identity 30%, �1.8 Å resolution, and maximum

R-factor of 20%. Because we planned to optimize the

energy function by predicting side chains in the crystal

form, we checked whether the CRYST1 records and scale

matrices produced viable crystals. We removed some

entries that produced extensive clashes of protein atoms

when crystal neighbors of the asymmetric unit were con-

structed (e.g. PDB entry 1RWR). The resulting list of

proteins was broken up into the training and testing set,

with the training set consisting of monomeric asymmet-

ric units to speed the optimization procedures described

later.

For all complete side chains in the resulting protein

lists, we calculated the geometric mean of the electron

density, as described previously.50 In this prior work,

low values of mean electron density were correlated with

nonrotameric side chains and conformationally disor-

dered side chains. For each residue type, mean electron

densities for the training and testing sets were sorted and

turned into percentiles, with 0% for the lowest electron

density side chain and 100% for the highest.
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For both sets, we used the program SIOCS (Heisen

and Sheldrick, unpublished) available with SHELX51 to

resolve the ambiguity in the flip state of Asn and His v2

and Gln v3. SIOCS uses hydrogen bonding and crystal

contacts to indicate whether these side chains are cor-

rectly placed in crystal structures, or if it is likely that the

terminal dihedrals should be flipped by 1808.
In crystal mode, calculations were performed on the

asymmetric unit with inclusion of interactions with crystal

neighbors. However, accuracy was only assessed on one

protein of the asymmetric unit, as provided by PISCES.

Optimization of the energy parameters

The accuracy of SCWRL4 depends on the choice of

rotamer library, the nonbonded energy functions and their

parameters, the parameters used in the FRM, and several

other procedural choices. We first need to decide on an

objective function to be optimized. There are a number of

possible choices, including RMSD, percent v1 correct

within some threshold (typically 408 in previous literature),

percent v112 correct, and percent of side chains correct

(side chains with all v angles within some threshold). We

decided to use the average absolute accuracy. For a side-

chain type such as Lys, this is an average of percent v1, per-

cent v112, percent v11213, and percent v1121314 correct:

PCLys ¼ 100
N1 þ N12 þ N123 þ N1234

4NLys

where N12 for instance is the number of lysine side chains

with both v1 and v2 correct within 408. This value gives

added weight to the more reliably determined degrees of

freedom closer to the backbone. To obtain accuracy across

all side-chain types, we weight PC for each amino acid

type by its frequency:

PC ¼
P

Res NResPCResP
Res NRes

We have a large number of parameters that can be opti-

mized. First, the v-angle deviations di for the subrotamers

can be set individually for each dihedral degree of freedom.

SCWRL4 uses constant times the standard deviation pro-

vided in the rotamer library, where the constant is specific

for each degree of freedom for each side-chain type:

di ¼ ciri

We also optimize the ‘‘temperature’’ used in the FRM

procedure separately for each amino acid type. For calcula-

tion of pairwise rotamer–rotamer energies, the tempera-

ture is taken as the arithmetic average of the temperatures

of the corresponding amino-acid types. The last parameter

is the coefficient in front of the rotamer library term which

balances the influence of the static frame and the rotamer

library in the self-energy of a rotamer. Thus for every

amino-acid type, we obtain l 1 2 parameters, where l is

the number of v angles required to specify the conforma-

tion of the side-chain of a certain amino-acid type. These

parameters form a 78-dimensional space that can be

searched to improve the quality of prediction. In addition,

we also have the hydrogen bond parameters and the

atomic radii that can be optimized to improve the predic-

tion accuracy.

We used a special technique to perform the optimization

in the 78-dimensional space of the parameters concerned.

The main idea is similar to classical block-coordinate

descent methods,52 where on each iteration an optimum

along one or several axes is resolved. In our case, the search

space of any iteration consists of the parameters of a single

amino-acid type, while the objective function is maximized

within some vicinity of the current values of these parame-

ters. Every iteration update only the parameters associated

with the corresponding amino-acid type whereas the pa-

rameters of the other amino-acid types remain unchanged.

In this method, any iteration updates the parameters in a

way that increases the value of the objective functions,

otherwise keeping the parameters unchanged. Within each

iteration, the approximate solution of the underlying

optimization task is obtained using a special technique

as described in Supporting Information. Changing the

amino-acid types from one iteration to another will

impose a sequence of points in the original 78-dimensional

space along which the value of the objective function will

gradually increase (or at least will remain unchanged). Iter-

ations are grouped into rounds—a randomly shuffled

sequence of 18 iterations, which contains all residue types

except ALA and GLY. Our experiments showed that a few

rounds are typically enough to find some (not necessarily

global) maximum of the objective function.

The key advantage of the protocol is that it lets us use

specific properties of the internal structure of the rotamer

assignment procedure. When the FRM is enabled, the most

CPU-consuming part of the whole prediction is the calcula-

tion of the interaction graph and especially the calculation

of the pairwise energies. However for some pair of amino

acids, if neither of the rotamers has been changed then the

current energy of the pairwise interaction between them is

valid and does not need to be recalculated. Conversely,

changing the parameters of some amino acid type affects

only the rotamers of that type and their interactions with

rotamers of any other type. During a single iteration, only

side chains of one amino-acid type are modified and so

most of the interaction graph can be preserved while only a

minor part has to be recomputed. Moreover, if only the

weight of the rotamer library’s energy term is changed,

then neither the static frame energies nor the energies of

pairwise interactions have to be recomputed. The parame-

ters were optimized such that all side chains were in their

crystal environment, interacting with crystal neighbors of

the asymmetric unit. This is particularly important for po-

lar side chains with contacts between asymmetric units.
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Accuracy versus accessible surface area and
percentile electron density

The smoothed curves in Figures 8 and 9 were calcu-

lated using kernel density estimates53 by calculating

probability density estimates of correctly and incorrectly

predicted side chains as a function of relative accessible

surface area (RSA) and percentile of electron density:

f ðAÞ ¼ 1

Nh

XN
i¼1

K
A� Ai

h

� �

where Ai is the RSA of residue i or its electron density

percentile, and K is a Gaussian kernel with bandwidth h:

K
x

h

� �
¼ 1ffiffiffiffiffi

2p
p e�x

2=2h2

The prediction rate at A is calculated using Bayes’ rule:

pðcorrjAÞ ¼ pðAjcorrÞpðcorrÞ
pðAjcorrÞpðcorrÞ þ pðAjincorrÞpðincorrÞ

where p(A|corr) and p(A|incorr) are calculated using the

expression for f(A) using the correctly predicted and

incorrectly predicted side chains, respectively. p(corr) and

p(incorr) are just the frequencies of correctly and incor-

rectly predicted side chains overall. Kernel density esti-

mates exhibit unfavorable behavior at boundaries, and so

the data were reflected across A 5 0 to account for this.

No correction was made at A 5 100.

Library

SCWRL4 has been redesigned as a library, so that its

optimization engine can be used in other scenarios such as

protein design. It uses a delayed computation model. First,

the model data (referred to as the workspace) is defined by

specifying the location of amino-acid residues with appro-

priate rotamers via calls to functions of the library. After

that the calling program uses the SCWRL4 engine in the

library to derive the optimal assignment of rotamers. This

will request that SCWRL4 calculate all the required energies

and perform combinatorial optimization after which for

each residue one of its rotamers will be marked as optimal.

This information can then be used in other applications.

The SCWRL4 library keeps the model alive for further

usage even after the optimal assignment has been found.

This means that after the optimal rotamers have been

resolved, some modifications can be introduced into the

model and the optimization requested again. In this case,

SCWRL4 will recalculate only those energies that need to

be modified due to changes in the model, while for energies

between persistent objects it will use cached values.

Availability

SCWRL4 is available at http://dunbrack.fccc.edu/scwrl4.

RESULTS

Training and testing sets

We used separate training and testing sets of 100 and

379 proteins respectively to optimize and test various pa-

rameters and algorithmic choices for development of

SCWRL4. Details of these sets are given in Supporting

Information. The resolution cutoff for both sets was 1.8

Å, and the maximum mutual sequence identity was 30%.

All calculations performed later are either on the asym-

metric unit or using crystal symmetry, although in each

case the accuracy results are compiled on sets consisting

of only one chain of each sequence.

Accuracy of SCWRL4

The overall accuracy of SCWRL4 is presented in Table I

for those side chains with electron density above the 25th

Table I
Accuracy of SCWRL4

Count

ALL ARG ASN ASP CYS GLN GLU HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL

45216 2803 2238 3161 805 1934 3579 1202 3043 5096 2996 1107 2115 2489 3229 2935 758 1828 3898

Conditional Avg. 88.1 77.6 86.6 90.5 92.7 77.7 78.4 79.8 95.4 95.4 78.1 84.9 97.3 92.1 75.8 94.0 91.1 96.6 97.1
Chi_1 89.3 81.8 90.1 88.8 92.7 84.6 78.3 91.1 98.6 95.4 81.9 89.0 96.9 88.2 75.8 94.0 93.0 95.6 97.1
Chi_2 89.1 86.2 83.2 92.2 79.9 81.5 68.4 92.2 95.4 85.0 88.7 97.8 96.1 89.2 97.5
Chi_3 73.5 66.4 68.6 75.5 79.6 77.1
Chi_4 70.7 76.1 65.7

Absolute Avg. 82.4 58.7 82.5 85.3 92.7 66.2 63.4 76.7 94.7 93.2 60.8 76.3 95.8 86.5 75.8 94.0 88.0 94.4 97.1
Chi_1 89.3 81.8 90.1 88.8 92.7 84.6 78.3 91.1 98.6 95.4 81.9 89.0 96.9 88.2 75.8 94.0 93.0 95.6 97.1
Chi_2 79.7 70.5 74.9 81.8 67.6 63.8 62.3 90.9 91.0 69.6 79.0 94.8 84.7 83.0 93.2
Chi_3 50.5 46.8 46.3 48.2 55.4 60.9
Chi_4 36.0 35.6 36.4

RMSD Avg. 0.82 2.15 0.79 0.68 0.41 1.43 1.34 1.14 0.33 0.48 1.58 1.09 0.65 0.24 0.70 0.31 1.27 0.81 0.22
Sigma 1.05 1.52 0.89 0.88 0.66 1.16 1.10 1.16 0.42 0.64 1.20 0.96 0.80 0.25 0.91 0.53 1.55 1.04 0.39

Percent accuracy is given for side chains with electron density from 25 to 100th percentiles. Calculations were performed on the asymmetric units of the 379 PDB testing set.
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percentile. The accuracy is reported in three different ways.

First, for each side-chain type, the conditional accuracy for

each dihedral degree of freedom, vi, is reported. This is the

percent of vi that is correct, given that the v angles closer

to the backbone, vi21,. . .,v1 are also correct. So for

instance, for Met, for those residues with both v1 and v2

correct, 77.1% have v3 correct. The column ‘‘ALL’’ counts

only those residue types with that degree of freedom. Sec-

ond, for each side-chain the absolute accuracy at each

degree of freedom is the percentage of all residues of that

type such that vi,. . .,v1 are all correct. So for instance, for

Met, 60.9% of all residues are predicted correctly for v1,

v2, and v3. Finally, the average RMSDs are given for each

side chain type. For a set of residues of the same type, there

are two ways to calculate the RMSD. First, one can calcu-

late the RMSD for each residue, and then average these val-

ues. Second, one can do the sum of square distances over

all of the atoms of all of the residues, take the mean, and

then the square root. The values are not the same. We use

the former definition.

The numbers most frequently cited for side-chain pre-

diction accuracy are the v1 and v112 rates over all side-

chain types, where v112 is the absolute accuracy at the

v2 degree of freedom in Table I. These values are 89.3

and 79.7% respectively for the 25–100th percentiles of

electron density. For all side chains, these values fall to

86.1 and 74.8%. We exclude the bottom 25% because

of the inherent uncertainty in these conformations (see

later). For 10 of 18 residue types, the v1 accuracies

exceed 90%, and these are predominantly the aliphatic

and aromatic residue types. Ser is the most difficult to

predict, with an accuracy rate of 75.8%.

In Table II, we show the improvement in prediction

accuracy of SCWRL4 over SCWRL3 for each residue type

and for the conditional and absolute accuracy measures.

The overall improvement in v1 accuracy is 3.5%

(SCWRL4 accuracy—SCWRL3 accuracy on the same test

set of 379 proteins). The largest improvements are in

Trp, Arg, Gln, Glu, Met, Asp, Asn, and Ser all of which

exceed 6% improvement in average absolute accuracy.

The improvement in accuracy in SCWRL4 over

SCWRL3 was achieved through a number of different

changes in the sampling space, the energy function, and

the algorithm. Each of these feature changes was chosen

and/or optimized on the basis of improvement in the

training set of 100 proteins. In Figure 6, we show the

Table II
Improvement of SCWRL4 over SCWRL3

Count

ALL ARG ASN ASP CYS GLN GLU HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL

45216 2803 2238 3161 805 1934 3579 1202 3043 5096 2996 1107 2115 2489 3229 2935 758 1828 3898

Conditional Avg. 3.9 9.0 4.7 3.9 1.9 10.0 6.4 4.8 2.5 2.0 0.8 4.4 2.5 1.6 6.2 1.9 7.7 2.6 2.0
Chi_1 3.5 5.3 4.9 5.1 1.9 5.3 3.5 2.1 2.1 2.4 3.1 4.3 2.1 3.3 6.2 1.9 6.5 2.7 2.0
Chi_2 3.0 1.4 4.6 2.8 6.2 5.7 7.5 2.9 1.6 0.4 4.1 2.9 -0.1 8.9 2.5
Chi_3 8.7 10.4 18.3 10.1 0.8 4.7
Chi_4 8.7 19.0 21.0

Absolute Avg. 4.8 9.0 6.4 6.1 1.9 10.5 7.2 5.1 3.5 3.1 2.6 6.9 3.5 3.2 6.2 1.9 10.0 3.8 2.0
Chi_1 3.5 5.3 4.9 5.1 1.9 5.3 3.5 2.1 2.1 2.4 3.1 4.3 2.1 3.3 6.2 1.9 6.5 2.7 2.0
Chi_2 5.7 5.6 8.0 7.0 9.2 7.1 8.1 4.8 3.8 2.9 7.3 4.9 3.1 13.5 5.0
Chi_3 9.7 10.5 17.0 11.1 2.9 9.0
Chi_4 7.9 14.8 1.4

Percent accuracy improvement of SCWRL4 over SCWRL3 is given for side chains with electron density from 25 to 100th percentiles. Calculations were performed on

the asymmetric units of the 379 PDB testing set.

Figure 6
Effect of SCWRL4 features on differences in SCWRL3 and SCWRL4

accuracy. The accuracy shown is average absolute accuracy of the testing

set, which covers all side-chain dihedral angles (see text). Atomic radii,

use of optimized radii; Interpolation, interpolation of rotamer library

probabilities and dihedral angles; Local BB, adding interaction between

side chain and atoms N, HN of residue i2 1 and C, O of residue i1 1,

previously neglected in SCWRL3; P 5 98%, reading in top 98% of

probability from rotamers sorted in descending order of frequency (90%

in SCWRL3); H-bonds, new hydrogen bond potential; New RL, new

rotamer library; FRM, flexible rotamer model; Tuning of parameters,

tuning of FRM parameters and rotamer library weights.

Side-Chain Prediction with SCWRL4
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effects of each change added to SCWRL3 (boxes R through

T) or each change removed from the final SCWRL4 proto-

col (boxes A through I). The figure demonstrates that the

effect of each feature is context-dependent; that is, the

effect is different when added to SCWRL3, which contains

none of the new features versus when it is removed from

the final SCWRL4, which contains all of the new features.

The directed graph leading from SCWRL3 to SCWRL4

along the outside of the figure shows the improvements as

each feature is added consecutively. The most important

changes include the FRM, the new rotamer library, the

addition of a hydrogen bonding function, changes in

the atomic radii used, and using a larger percentage of the

rotamer library (the top 98% of rotamer density, instead of

90% as used in SCWRL3). The RRM (box C) is 2.01% less

accurate in average absolute accuracy than the full FRM

(box A). The decrease in v1 and v112 accuracies are 1.4

and 2.8%, respectively.

Prediction of side-chain conformation
in crystals

We enabled consideration of crystal symmetry in side-

chain conformation prediction in SCWRL4. This is

accomplished by determining the interaction graph in

the context of neighboring chains to the asymmetric unit

within the crystal. Thus, a residue in the graph may have

a neighbor on the other side of the protein, if that resi-

due makes contact with that residue in a crystal neigh-

bor. Crystals were built and neighbors determined as

described in previous work.44 It is of interest to deter-

mine the effect on prediction accuracy when crystal sym-

metry is taken into account. It should be noted that this

is a bona fide prediction within the crystal, since the side

chains in the neighboring asymmetric units have the

same conformations as the asymmetric unit whose struc-

ture is being predicted.

In Figure 7, we show the improvement in accuracy for

all side chains and for those in crystal contacts when the

crystal symmetry feature is enabled. The accuracy values

shown are average absolute accuracy, which are averages

of the v1, v2, v3, and v4 absolute accuracies shown in

Table I. Improvement occurs for all side-chain types.

Among all side chains, not just those in crystal contacts,

the effect is strongest for those most likely to be on the

surface, in particular the longer side chains, Arg, Lys,

Glu, and Gln. However, when other side chain types are

in crystal interfaces, their accuracy is also strongly

affected by the presence of the crystal neighbors. This is

especially true for Trp and Met. The v1 and v112 accu-

racy in the crystal for side chains with electron densities

in the 25–100% percentiles are 90.9 and 82.6%, respec-

tively. For all side chains, the values are 87.4 and 77.1%

Prediction of side-chain conformation versus
accessible surface area and electron density

Exposed side chains have fewer steric constraints and

are more difficult to predict accurately. We have calcu-

lated the accuracy of predictions (within 408) as a func-

tion of the relative surface accessibility (RSA) of side

chains calculated with the program naccess.54 Both the

Figure 7
Improvement in accuracy due to inclusion of crystal neighbors. The accuracy figures shown reflect the differences in average absolute accuracy for

the testing set as described in the text.
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predictions and the surface area calculations were per-

formed in the crystal environment, so that side chains in

protein interfaces in the crystal are considered buried.

The results are shown in Figure 8. The accuracy versus

surface area was calculated using kernel density estimates

as described in the Methods section. In Figure 8, the

probability density of each residue type as a function of

accessible surface area is shown in magenta (multiplied

by 20). These curves show that in the crystal, most resi-

due types are predominantly buried (RSA < 40%) with

maxima at 0% RSA. The only exceptions are Lys, Arg,

and Glu with density modes at 30–40% exposure.

The frequency of accurate predictions is shown for each

side-chain type for all side chains with RSA > 0%: v1

(black), v112 (red), v11213 (orange), and v1121314 (blue).

As expected, less accessible side chains are predicted more

accurately than accessible side chains. Note that at high

RSA, the estimates can be quite noisy due to very small

counts, especially for Cys and Trp. Separate points are plot-

ted for those side chains with 0% RSA (using the same

color scheme), calculated separately from the kernel den-

sity estimates shown in the curves, For completely buried

side chains in the crystal, 96.0% of v1 and 91.5% of v112

dihedrals are correctly predicted. All side-chain types are

predicted with greater than 95% accuracy for v1 except

Cys (94.4%), Pro (91.9%), and Ser (79.1%).

We have previously shown that rotameric side chains

have higher electron density than nonrotameric side

chains, and that nonrotameric side chains are likely to be

disordered in a manner similar to side chains that are

annotated in PDB files as existing in more than one v1

rotamer in the crystal.50 Since SCWRL4 predicts only

one conformation per side chain, it seems likely that side

chains with lower electron density should be harder to

predict, since they may be placed in only a portion of

the observable electron density. In Figure 9, we show pre-

diction accuracy as a function of the percentile of elec-

tron density of the entire side chain, using the same color

scheme as that in Figure 8. The curves are also calculated

with kernel density estimates. Low percentiles correspond

to low-electron density, disordered side chains, and high

percentiles correspond to high-electron density, well-or-

dered side chains. Some low-density side chains may be

incorrectly placed in the density.

For all side-chain types and all degrees of freedom, the

accuracy rises with increasing electron density. For some

Figure 8
Accuracy versus relative surface area. Accuracy of SCWRL4 predictions is shown as a function of side-chain relative accessible surface area,

calculated with kernel density estimates (see Methods section): v1 (black), v112 (red), v11213 (orange), and v1121314 (blue) within 408. The data

points for 0% RSA were calculated separately from the kernel density estimates. The magenta curves are the probability density estimates of all side

chains of each type in the crystal.
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degrees of freedom, this is only true at low electron den-

sity, and the accuracy plateaus above the 30th percentile.

But for the longer side chains, the increase in accuracy

extends from 0 to 100%. For all side chains, the v1 accu-

racy increases from 69.0 to 94.6% at 0 and 100th per-

centiles of electron density. For v112, the equivalent

numbers are 52.4 and 82.3%. At the highest electron

densities, the v11213 and v1121314 accuracies are

71.9 and 56.5%.

CPU time

In Table III, we show a comparison of the CPU time

for the testing set of 379 proteins for SCWRL3 and

SCWRL4, for both the RRM and the FRM and for the

asymmetric units and crystals. The mean, median, and

maximum CPU times over the testing set reveal that the

different calculations have different properties. SCWRL3

is very fast on most proteins, but on a small number of

structures takes exceedingly long times. On two ASUs,

SCWRL3 failed to finish and on one protein took 1409 s.

SCWRL4 with the RRM model takes slightly longer than

SCWRL3 with median times of 1.51 and 1.27 s, respec-

tively. This is due to slightly longer times required for the

more complicated energy function and denser and larger

graphs that result. However, the maximum time for the

SCWRL4 RRM is 72 s and the mean time only 4 s.

For the FRM model, SCWRL4 takes a median of 7.9 s,

a mean of 12.2 s, and a maximum of 98 s. Thus, the me-

dian time is about 6.3 times slower for the SCWRL4

FRM calculation compared with SCWRL3, and the mean

time is 1.5 times slower. SCWRL4 is also able to calculate

the conformations of proteins in the crystal environment,

taking account of crystal symmetry. Calculation with

Table III
CPU Time Comparison of SCWRL3 and SCWRL4

Program Model Target Mean (s) Median (s) Max (s)

SCWRL3 RRM ASU 8.03a 1.27 1409a

SCWRL4 RRM ASU 4.17 1.51 72
Crystal 11.31 4.56 158

FRM ASU 12.15 7.94 99
Crystal 20.66 14.55 98

Test set of 379 proteins. RRM, rigid rotamer model; FRM, flexible rotamer model;

ASU, asymmetric unit; Crystal, including crystal symmetry. Calculations were per-

formed on a machine running Windows XP with an AMD Opteron.
aFor SCWRL3, two PDB entries did not finish after several hours and are

excluded from mean and maximum.

Figure 9
Accuracy versus percentile of electron density. Accuracy of SCWRL4 predictions is shown as a function of electron density percentile calculated for

each residue type, calculated with kernel density estimates (see Methods section). Curves for v1 (black), v112 (red), v11213 (orange), and v1121314

(blue) within 408 are shown.
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crystal symmetry takes 1.7–1.8 times that of the ASU for

the FRM model of SCWRL4. The effect on the RRM

model is somewhat larger.

The calculations were performed on a machine with

an AMD Athlon 64 3 2 Dual Core Processor 44001 at

2.21GHz, with 3.25 GB of RAM, and running by 32-bit

Microsoft Windows XP Professional Service Pack 3.

DISCUSSION

Although the process of sequence-structure alignment is

well represented by many available web servers and down-

loadable programs, relatively few programs exist for pro-

ducing three-dimensional coordinates from target-tem-

plate alignments.55 We have previously developed the

MolIDE program that takes an input target sequence and

produces alignments of this target sequence to available

homologous proteins of known structure.56,57 In a graph-

ical environment, it is then possible to use the SCWRL3

program to produce a model of the target sequence retain-

ing the input sequence numbering. We intend for SCWRL4

to perform the same function within the existing MolIDE,

but with higher accuracy than SCWRL3. It may also be

used in existing web servers that perform searches for

remote homologues such as FFAS03.34 Using the RRM,

SCWRL4 is about the same speed as SCWRL3 in most

cases but is able to complete all test cases in a reasonable

time, whereas SCWRL3 sometimes does not converge.

With the FRM, the median value of SCWRL4 is slower by

a factor of about 6, but with convergence in all cases tested.

SCWRL4 has a similar ease of use, and therefore will func-

tion in similar environments as SCWRL3.

There are a number of potential sources of disagreement

between predicted side-chain conformations based on

native backbones and experimental structures. In this arti-

cle, we have explored several of these. The first and most

obvious is the scoring function that must realistically rep-

resent the physical forces that position side chains in pro-

teins. We have improved the rotamer library that SCWRL

depends on, especially in those degrees of freedom that are

not strictly rotameric. These include the amide and car-

boxylate moieties of Asn, Asp, Glu, and Gln, and the aro-

matic rings of Phe, Tyr, His, and Trp (Shapovalov and

Dunbrack, in preparation). Second, we have also explored

issues of sampling by including conformations near the

rotameric positions using the FRM approach suggested by

Mendes et al.32 Each of these issues can be explored fur-

ther, for instance by including solvation energy terms as

well as continuous dihedral angle minimization, as per-

formed in Rosetta.19 For the latter, the new rotamer libra-

ries may afford an opportunity by providing continuous

energy functions as a function of the side-chain v dihedral

angles, independent of rotamer definitions.

We have explored two other aspects of side-chain pre-

diction that affect the overall accuracy. The first of these

comprise the interactions of side chains within the crys-

tal. For the first time, we have developed a side-chain

prediction program that can account for arbitrary sym-

metry, that is, predicting the conformation of all side

chains within the crystal. We find increases in accuracy

of almost all side-chain types, especially for those most

likely to be in crystal contacts. Improvement in the crys-

tal is interesting for two reasons. First, if side-chain pre-

diction is used for molecular replacement or structure

refinement, then the ability to consider the crystal sym-

metry will be very useful. Second, this is some indication

that the prediction of side-chain conformation in pro-

tein–protein interfaces with SCWRL4 is likely to be sig-

nificantly better than for side chains on the surface but

not in protein interfaces.

The second important issue is the apparent disorder of

many side chains in crystals that we have studied previ-

ously.50 We have shown that prediction accuracy monot-

onically improves with increasing electron density, such

that side chains that are clearly positioned in one confor-

mation in the crystal are the easiest to predict. Similarly,

side chains that are buried within the crystal (either

within single proteins or within asymmetric-unit or crys-

tal interfaces) are much better predicted than those that

are exposed to the solvent.

In this article, we have explored the properties of

SCWRL4 and we hope that users will find it beneficial

for predicting the structures of proteins.
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