Combining structural bioinformatics and deeplearning-based protein structure prediction:

AlphaFold2 models of all 437 catalytically competent human kinases in the active form

Bulat Faezov Roland Dunbrack

In Humans, there are 494 *typical* kinase domains but only 437 *catalytic* typical kinase domains

Pseudokinases are protein kinase domains that are missing key elements that facilitate catalysis.

Kinase Structures in the Protein Data Bank http://dunbrack.fccc.edu/kincore

Active forms of kinases should be able to bind ATP, Mg ions, and <u>substrate</u>

Models of active kinases are needed to:

- Understand substrate specificity
- Differences between active and inactive conformations of each kinase
- Understand regulation of catalysis of each kinase
- Druggability of the active form of the kinase
- Effect of mutations on kinase activity

Can we make AlphaFold2 models of all 437 kinases in their active form?

What does an active kinase look like anyway? How many are there in the PDB?

Look at substrate-bound structures and ATP-bound structures

What makes a kinase structure active?

"Catalytically primed structures" (Modi and Dunbrack, PNAS, 2019

- ATP-bound
- Ion complex (Mg²⁺ or Mn²⁺)

- Activation loop phosphorylated
- Resolution $\leq 2.5 \text{ Å}$

What makes a kinase structure "active"?

Common, well-known features of active kinases observed in these structures:

- 1. DFGin Phe near C-helix
- 2. BLAminus dihedral angles of XDFG motif (Phe in g- rotamer)
- 3. Salt bridge in N-terminal domain (C-helix Glu + Beta3 Lys)

Catalytically Primed Structures Have Uniform Dihedral Angles of X-DFG Motif Modi and Dunbrack, PNAS 2019

- 1. DFGin Phe near C-helix
- 2. BLAminus dihedral angles of XDFG motif (Phe in g- rotamer)
- 3. Salt bridge in N-terminal domain (C-helix Glu + Beta3 Lys)

Clustering in dihedral angle space of XDF ϕ,ψ and Phe χ_1 with DBSCAN

Salt bridge in the N-terminal domain positions ATP

- 1. DFGin Phe near C-helix
- 2. BLAminus dihedral angles of XDFG motif (Phe in g- rotamer)
- 3. Salt bridge in N-terminal domain (C-helix Glu + Beta3 Lys) chelates ATP phosphate

What else makes a kinase structure "active"? Look at 40 substrate-bound structures (most with ATP and Mg²⁺)

40 Unique kinase/substrate							
pairs:							
	Peptide	Protein					
GC	6	2					
AMK	3	2					
K1	1						
MGC	3	1					
THER	2						
ΓE	1	1					
KL	1	1					
YR	10	6					

What else makes a kinase active?

Contacts between substrate and activation loop in red

Kinase	PDB	Ligand	DFGxxx	<i>xxxxxC</i> GTxxxAPE
AGC_AKT1	4ekk	ANP-MG	DFG 4 56	54 3210987654 APE
AGC_AKT2	1061	ANP-MG	DFG 4 56	543 210987654 APE
AGC_PRKACA	7e0z	ANP-MG	DFG 4 56	5432 10987654 APE
AGC_PRKCI	5lih	ADP-MG	DF <mark>G45</mark> 6	543 2109876 54APE
CAMK CAMK2A	7uir	ATP-MG	D FG 4 56	5432 1098765 4APE
CAMK_PHGK1	2phk	ATP-MG	DF G4 56	543 210987654 APE
CAMK_PIM1	2bzk	ANP-MG	DFG 4 56	<i>543210987654APE</i>
CK1 CSNK1D	6ru7	ADP	DFG456	54 32109876 54APE
CMGC_CDK2	lqmz	ATP-MG	DFG 4 5 6	54 32109876 5 4 APE
CMGC_DYRK1A	2w06	CAZ	DFG 4 56	54 3210987654 APE
OTHER_CDC7	6ya7	ADP-ZN	12 34 56	54 3210987 6 54 APE
STE_PAK1	4jdi	ANP-MG	DFG 4 56	54 3210987654 APE
TYR_ABL1	2g2i	ADP	-	54 3210987 6 5 4APE
TYR_EGFR	5czh	-	DFG456	543 21098765 4APE
TYR_EPHA2	3fxx	ANP-MG	123 4 56	5432 1098765 4APE
TYR_FES	3cbl	STU	DFG 4 56	54 3210987 6 5 4APE
TYR_FGFR2	2pvf	ACP-MG	D FG 4 56	5432 10987 6 5 4APE
TYR_IGF1R	1k3a	ACP	DFG 4 56	543210987 6 54 APE
TYR_INSR	3bu5	ATP-MG	D FG 4 56	543210987654 APE
TYR SYK	5c27	50J	D FG 4 56	543 21098765 4APE

XHRD – DFG6 backbone hydrogen bond distance TYR kinase

EPHA2 3fy2 with substrate BLAminus ActLoopNT-in (3.0 Å) EPHA2 8bio, no substrate BLAminus ActLoopNT-out (9.8Å)

C-terminal Activation Loop Conformation AURKA BLAminus Structures

AURKA Conf1

AURKA Conf2

Conf1 is substrate-binding – Conf2 is not AURKA BLAminus Structures

AURKA Conf1 (TPX2-bound) with substrate-bound AGC_PRKACA, CAMK_CAMK2A, PIM1, PHGK1

AURKA Conf2 with substrate bound structures (clash)

TPX2 makes AURKA active by "pulling on the activation loop"

AURKA Conf1

AURKA Conf2

Criterion for the C-terminus of the Activation Loop APE9(C α)-hRd(O) distance criterion ≤ 6.0 Å

AURKA Conf1 distance 5LXMA, 3.3 Å cGtldylPPE AGC_PRKACA substrate bound structure (7E0Z), dist=3.4 Å cGtpeylAPE AURKA Conf2 distance 5DR2A, 10.0 Å (substrate clash)

APE9(Cα)-hRd(O) distance in substrate-bound structures

5 Active Criteria Applied to Catalytic Kinases PDB ActLoopCT (APE9 distances) has biggest effect after DFGin-BLAminus

- 1. DFGin
- 2. BLAminus
- 3. SaltBr-in: distance<3.6Å
- 4. ActLoopNT-in: DFG6-Xhrd distance<3.6
- 5. ActLoopCT-in: APE9/hRd distance<6.0 (nonTYR); <8.0 TYR)

All catalytic human kinases	437	100 %
Any conformational state	268	61%
DFGin+BLAminus	202	46%
DFGin+BLAminus+SaltBr-in	188	43%
DFGin+BLAminus+ActLoopNT-in	193	44%
DFGin+BLAminus+ActLoopCT-in	162	37 %
Active kinase structures	155	36 %
Active structures with full Actloop	130	30 %

Making models of active structures of all 437 human catalytic protein kinases with AlphaFold2 with shallow sequence alignments and active templates

Sequence sources for MSA

- 1. Orthologues of query (>50% seqid, >90% coverage, <90% identity to each other
- 2. Sequences in the same kinase family (AGC, CAMK, etc.)
- 3. Uniprot90

Number of sequences in MSA:

5, 10, 15, 20, 25, 30, 60, 90,10000 (for Uniprot90)

Template databases [skip template for modeling same protein]

- 1. Active structures in PDB (according to 5 criteria) = 165 kinases and 278 chains (human and nonhuman)
- 2. "Distillation templates": 246 active models built by AlphaFold2

Heo and Feig, Proteins 2022; Del Alamo et al, eLife, 2022

AlphaFold2 Active Models of 437 Human Catalytic Kinases

Problem children: TYR_LMTK2, CAMK_OBSCN-2

Combining all MSA sources and depths with PDB and AF2 templates (and one mutant) \rightarrow 437 active kinase models

Picking the best active model with min pLDDT of activation loop

AGC_AKT1

Picking the best active model with min pLDDT of activation loop

CMGC_CDK2

23

Benchmark of 130 "Active" Structures from PDB with complete activation loops 80% better than 1.0 Å, 90% better than 2.0Å

24

SRC in the benchmark

No human active SRC structure in PDB but SRC_CHICK is active in PDB 3DQW

ABL1 substrate (2G2I) SRC_CHICK (3DQW) SRC_HUMAN (AF2) SRC_HUMAN (1Y57) Used in MD simulations of "Active" SRC RMSD = 2.5 Å to AF2

Summary and Prospects

- Rigorous structural bioinformatics defines features of substrate-bound kinase structures ("Active")
 - DFGin
 - BLAminus
 - Saltbridge
 - ActLoop-NT position
 - ActLoop-CT position
- Only one third of 437 kinases are active in PDB
- We produced AF2 models of all 437 in active form with shallow sequence alignments, active templates, heavy sampling, and strict structural bioinformatics criteria
- Inactive states are more complicated and more varied: most kinases will not exist in all inactive forms (SRCinactive-BLBplus, DFGout-BBAminus, etc.)
- AlphaFold-Multimer is capable of binding substrates to kinases and modeling other PPI that regulate kinases. Our models can be used as templates.
- <u>http://dunbrack.fccc.edu/kincore/activemodels</u> for data on PDB and (eventually) AF2 models

Acknowledgments

Bulat Faezov Vivek Modi (now GSK)

NIH MIRA R35 GM122517

http://dunbrack.fccc.edu/kincore/activemodels

Twitter: @RolandDunbrack

- Structural bioinformatics
- Rants about people parking in bike lanes.
- LGBTQ issues in science