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SUMMARY

Rotamer libraries are used in protein structure deter-
mination, prediction, and design. The backbone-de-
pendent rotamer library consists of rotamer frequen-
cies, mean dihedral angles, and variances as a
function of the backbone dihedral angles. Structure
prediction and design methods that employ back-
bone flexibility would strongly benefit from smoothly
varying probabilities and angles. A new version of
the backbone-dependent rotamer library has been
developed using adaptive kernel density estimates
for the rotamer frequencies and adaptive kernel re-
gression for the mean dihedral angles and variances.
This formulation allows for evaluation of the rotamer
probabilities,meanangles, andvariancesasasmooth
and continuous function of phi and psi. Continuous
probability density estimates for the nonrotameric
degrees of freedom of amides, carboxylates, and
aromatic sidechainshavebeenmodeledasa function
of thebackbonedihedrals and rotamersof the remain-
ing degrees of freedom. New backbone-dependent
rotamer libraries at varying levels of smoothing are
available from http://dunbrack.fccc.edu.

INTRODUCTION

Rotamers are discrete conformations of organic molecules
arising from large barriers to rotation about single bonds. Protein
side-chain rotamer libraries, which contain frequencies, mean
dihedral angles, and standard deviations of common conforma-
tions (Dunbrack and Cohen, 1997; Dunbrack and Karplus, 1993;
Lovell et al., 2000), are used extensively in structure determina-
tion, structure prediction, and protein design. The subdivision
of dihedral angle space into rotamers for the sp3-sp3 hybridized
degrees of freedom enables fast enumeration over all possible
conformers. In structure determination they are used as a search
space in the process of fitting side-chain conformations to elec-
tron density (Adams et al., 2002; Headd et al., 2009) as well as
in a number of structure validation methods (Davis et al.,
2004). In structure prediction they are used as a discrete search
space of conformations (Desmet et al., 1992; Dunbrack and Kar-
plus, 1993), and log rotamer probabilities are sometimes used as

a term in scoring functions (Canutescu et al., 2003; Krivov et al.,
2009; Liang and Grishin, 2002; Rohl et al., 2004b). In protein
design the sequence is altered by substituting in rotamers of
different residue types and scoring these conformations in the
environment of the side chain, including the rest of the protein
and ligands and/or protein partners (Gordon et al., 2003; Kuhl-
man and Baker, 2004). Thus, rotamer libraries form a critical
element in much of computational structural biology, and their
ongoing development remains an important task.
We have previously developed backbone-dependent rotamer

libraries in which the rotamer frequencies and mean dihedral
angles and their standard deviations are given on a 10! 3 10!

grid of the backbone dihedral angles f and c (Dunbrack, 2002;
Dunbrack and Cohen, 1997). These libraries were developed
using a Bayesian formalism by combining a prior estimate of
the probabilities for each (f, c) bin with raw counts of the ro-
tamers in overlapping 20! 3 20! bins (Dunbrack and Cohen,
1997). The prior estimates came from modeling the observed
(f, c)-dependent frequencies as the product of f and c depen-
dencies. The mean dihedral angles and their variances were
determined with a Bayesian normal model that combined sepa-
rate f- and c-dependent estimates with data points around each
(f, c) grid point.
In attempting to optimize the most recent version of this ro-

tamer library (Dunbrack, 2002) in the program Rosetta (Rohl
et al., 2004b), we found that both the rotamer probabilities and
the mean dihedral angles and their standard deviations were
quite bumpy in their variation with f and c, a result of using
raw counts in the probability estimates and calculation of simple
averages. Rosetta uses the first derivatives of the rotamer prob-
abilities,"v log Pðrjf;jÞ=vf and"v log Pðrjf;jÞ=vj, in the local
minimization of its scoring function (Leaver-Fay et al., 2011). The
jaggedness of the rotamer library is likely to cause artifacts in any
structure determination, prediction, or design program that
models backbone flexibility and utilizes local minimization of
scoring terms based on the backbone-dependent rotamer
library. Backbone flexibility is increasingly incorporated into
comparative modeling and protein design (Friedland et al.,
2008; Smith and Kortemme, 2008).
Another shortcoming of the previous libraries was the treat-

ment of nonrotameric degrees of freedom, in particular the
amide, carboxylate, and aromatic dihedral angle degrees of
freedom (the terminal c angles of Asn, Asp, Gln, Glu, Phe, Trp,
His, and Tyr). These degrees of freedom, connecting sp3 to
sp2 hybridized groups, are difficult to describe as ‘‘rotamers’’
with mean dihedral angles and variances about these means.
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Instead, they are usually quite broadly distributed with asym-
metric density distributions (Lovell et al., 1999). These distribu-
tions may vary with the backbone conformation because the
polar side chains interact electrostatically with the local back-
bone, and the aromatic side chains encounter large steric
clashes dependent on f and c. Therefore, it is desirable to calcu-
late a full density distribution of these dihedral angles for each
(f, c) grid point and c1 rotamer (or c1,c2 rotamer for Gln and
Glu). This is a complex estimation problem involving the regres-
sion of a density onto two angular degrees of freedom.
In this paper our aims in deriving a new backbone-dependent

rotamer library are several: (1) to take advantage of the much
larger data set that is available now than at the time of the last
library (2002); (2) to use electron density calculations to remove
highly dynamic side chains (or protein segments) that have
uncertain conformations or coordinates (Shapovalov and Dun-
brack, 2007); (3) to derive accurate and smooth density esti-
mates of rotamer populations and their relative frequencies,
including rare rotamers, as a continuous function of backbone
dihedral angles; (4) to derive smooth estimates of the mean
values and variances of rotameric side-chain dihedral angles;
(5) to improve the treatment of nonrotameric degrees of freedom,
i.e., those that are not well described by the rotamer model; and
(6) to employ methods producing meaningful estimates of ro-
tamer frequencies, dihedral angles means, and variances in
the Ramachandran areas lacking experimental data.
In order to produce smooth and continuous estimates of

the rotamer probabilities in this work, we use kernel density esti-
mation. A kernel is a nonnegative symmetric function, such as
a Gaussian, that integrates to 1.0 and is centered on each data
point. Density estimates at specific query points are determined
by summing the values of the kernel functions centered on the
data points. The smoothness of the density estimate is deter-
mined by the form of the kernel, in particular its bandwidth. Wider
kernels produce smoother density estimates, whereas narrow
kernels produce bumpier estimates. For each rotamer, r, of a
given residue type, we determine a probability density estimate,
rðf;jjrÞ, essentially a Ramachandran distribution for each ro-
tamer, and then use Bayes’ rule to invert this density to produce
an estimate of the rotamer probability, Pðrjf;jÞ:

Pðrjf;jÞ =
rðf;jjrÞPðrÞP

r0
rðf;jjr 0ÞPðr 0Þ

; (1)

where P(r) is the backbone-independent probability of
rotamer (r).
Density estimates for angles are more appropriately modeled

using the von Mises probability density function (PDF) as the
kernel rather than Gaussian or other nonperiodic kernels (Mardia
and Jupp, 2000). The von Mises distribution has the form:
rðxÞ= expðk cos xÞ=I0ðkÞ, where x is an angle on the circle, and
I0 is the modified Bessel function of the first kind of order zero.
The concentration parameter, k, is inversely proportional to the
squared width of the von Mises kernel, with larger values of k
producing narrower kernels. In order to deal with the large vari-
ation in density of data points on the Ramachandran map, we
use adaptive kernel density estimation (Abramson, 1982; Brei-
man et al., 1977), in which the bandwidth is allowed to vary
with the local density of data points. In this way, in sparse regions

the kernels placed on each data point are wider, whereas in
dense regions the kernels are narrower.
An important feature of our rotamer libraries is the f,c-depen-

dence of themeans and variances of the dihedral angles for each
rotamer, especially for c1. Due to interactions with the local
backbone, both steric and electrostatic, these average angles
have strong and systematic variation with f and c for each ro-
tamer (Dunbrack and Cohen, 1997). For this purpose in the
new rotamer library, we use adaptive kernel regression (KR)
estimators (Brockmann et al., 1993) to determine cjf;j; r as
smoothly varying functions of the backbone dihedrals. For the
KRs we make the concentration parameters of all kernels, k,
adaptive to the same local density of data around the query
point, rather than the data point as in the kernel density esti-
mates. We also make the variance heteroscedastic, such that
it is dependent on the backbone dihedral angles f and c.
In our earlier libraries all dihedral angle degrees of freedom

were treated as ‘‘rotameric.’’ That is, the entire dihedral angle
space was broken up into bins and conformations counted.
For asparagine, for instance, in 1997 we divided c2 into three
bins, ("90!,"30!), ("30!,+30!), and (+30!,+90!), by considering
OD1 and ND2 atoms as indistinguishable. Later in 2002, we used
the reduce program of Word et al. (1999) to orient OD1 and ND2
of Asn as well as possible, considering hydrogen-bonding
patterns. We then divided c2 in the range ("180!,180!) into six
bins, with different offsets depending on the c1 rotamer. In
each of these bins, we calculated mean dihedral angles and
standard deviations. This is a poor model for the density, which
is broadly distributed and asymmetric. In this work we produce
probability density estimates for the nonrotameric degrees of
freedom: rðcnjr"n;f;jÞ, where r"n in this case represents the
rotameric degrees of freedom. This is accomplished by
combining the techniques of adaptive kernel density estimation
and adaptive KR. These probability distributions will be useful
in minimizing the conformational energies of flexible degrees of
freedom on smooth potential energy surfaces in the form of
U= " log rðcnjr"n;f;jÞ.
The rotamer libraries described here are evaluated on a 10! 3

10! grid of f and c, but it should be noted that the use of kernels
with support from "p to p allows us to develop functions that
can be evaluated as continuous functions of f and c, i.e., at
any value of f and c, not just those on a predefined grid. This
is in contrast to our previous rotamer library formulation using
multinomial functions, which required integer counts of each
rotamer type within square bins of f,j space.

RESULTS

Data Set
The data set used in the new rotamer library was prepared
through a series of steps. We first determined the full list of
protein-containing PDB entries for which we could obtain elec-
tron densities from the Uppsala Electron Density Server (EDS)
(Kleywegt et al., 2004). We have shown previously that side
chains with sp3-sp3 hybridized bondswith nonrotameric dihedral
angles, those far from the typical mean values for (60!, 180!,
300!), havemuch lower electron density than average (Shapova-
lov and Dunbrack, 2007). This list was then filtered by the
PISCES server (Wang and Dunbrack, 2005) and run through
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the SIOCS program to flip Asn, Gln, and His terminal dihedral
angles to account for hydrogen bonding. Finally, we obtained
a list of 3985 protein chains from 3845 entries with resolution
better than or equal to 1.8 Å, an R factor cutoff of 0.22, and
mutual sequence identity of the chains of 50% or less.

We distinguish between rotameric and nonrotameric degrees
of freedom based on the hybridization state of the atoms
involved in the dihedral angle. Dihedral degrees of freedom are
centered on sp3-sp3 hybridized bonds and exhibit three narrow,
approximately symmetric peaks in their probability density distri-
butions. As an example, the c1 density for methionine is shown in
Figure 1A, with gauche+ {g+}, trans {t}, and gauche" {g"} peaks at
approximately 60!, 180!, and 300!, respectively. Nonrotameric
degrees of freedom in protein side chains, by contrast, are
centered on sp3-sp2 bonds, and exhibit broad and often asym-

metric probability density distributions. As examples, the c2

probability densities for asparagine and tryptophan are shown
in Figures 1B and 1C for each of the three c1 rotamers of these
residue types. The c3 densities for Gln depend on both the c1

and c2 rotamers, as shown in Figures 1D–1F.
We calculated the electron density at the atom coordinates of

3985 chains using methods described earlier (Shapovalov and
Dunbrack, 2007) and calculated the geometric mean of the elec-
tron density at the atomic positions in each residue as a quality
filter to remove disordered residues—those with electron densi-
ties in the bottom 25th percentile for each residue type. For the
rotamer library calculations, the resulting number of residues
totaled 581,128, and their individual counts are given in Table
S1 (available online), along with the degrees of freedom defined
for each side-chain type. We also accounted for incorrectly
modeled leucine residues (see Figure S1 and Table S2), and
we analyzed trans and cis proline separately, as well as disul-
fide-bonded and nondisulfide-bonded cysteines.

Deriving Backbone-Dependent Rotamer Probabilities
from Kernel Density Estimates
The challenging statistical problem that the backbone-depen-
dent rotamer library presents is shown in Figure 2, a scatter
plot of the nine leucine rotamer types on the Ramachandran
map. The goal is to calculate Pðrjf;jÞ, the probability of each ro-
tamer as a function of the backbone dihedrals f and c. The
nonuniform distribution in f,j and the large differences in overall
populations and distributions of the different rotamers must all
be accounted for. Our solution to this problem is to use adaptive

Figure 1. Backbone-Independent Distribution of Rotameric and
Nonrotameric c

(A) A probability density distribution of dihedral angles for a rotameric degree of

freedom tightly and symmetrically clustered near the canonical values of 60!,

180!, and 300! based onMet c1 data, regardless of c1,c2, or c3 rotamer (*, *, *).

(B andC) Distribution of the nonrotameric c2 degree of freedom of Asn and Trp,

respectively, for each of their c1 rotamers: g+, t, and g".

(D–F) The backbone-independent distribution of nonrotameric c3 of Gln for

each of its (c1, c2) rotamers. Nonrotameric c3 distributions for Gln are

dependent on both the c1 and c2 rotamers. The distributions of the non-

rotameric degrees of freedom are very broad and asymmetric and cannot be

modeled with a rotameric model.

Figure 2. The Backbone-Dependent Rotamer Library Problem
f-j Scatter plot of nine leucine rotamers and statistics of the total number of

rotamers of each type. The scatter plot has larger and brighter markers for rare

rotamers and smaller and darker markers for abundant rotamers. The total

number of rotamers differs significantly among the nine types. The relative

distributions of each rotamer depend strongly on backbone conformation.
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kernel density estimates (AKDEs) to obtain rotamer PDFs,
rðf;jjrÞ from the input data set ffi;ji; rig, and to use Bayes’
rule to invert these densities to obtain the rotamer probabilities,
Pðrjf;jÞ.
As an example, in the top row of Figure 3, we show the PDFs

rðf;jjrÞ of the g+, t, and g" rotamers of valine above their result-
ing backbone-dependent probabilities, Pðrjf;jÞ, shown in the
bottom row. The three rotamers have notably different f,j prob-
ability densities that in turn produce quite different relative
frequencies of the three rotamers as a function of f and c. These
estimates match conformational analysis of syn-pentane inter-
actions (Wiberg and Murcko, 1988) of the side-chain Cg1 and
Cg2 atoms with atoms of the backbone whose positions are
dependent on f and c (Dunbrack and Cohen, 1997; Dunbrack
and Karplus, 1994).
To reach the results shown in Figure 3 for the new backbone-

dependent rotamer library, we investigated and compared the
results from a number of different methods. These are shown
together in Figure 4 for the g+ rotamer of serine, Pðr =g+ jf;j;
aa=SerÞ. In the straightforward histogram approach (Figure 4A),

the number of data points with a particular rotamer in every
nonoverlapping (f,c) bin is counted and divided by the total
number of data points of any rotamer type in the same bin.
This approach produces crude estimates of the rotamer proba-
bilities. The prevailing majority of the 10! 3 10! histogram bins
have ‘‘unknown’’ values (set to zero in the figure), produced by
division of zero points by zero points. A large proportion of the
bins have very spiky and extremely unreliable probability
estimates.
The Bayesian approach used in our 1997 and 2002 rotamer

libraries used 2-fold periodic kernels (although we did not call
them as such at the time) to produce separate f-dependent
and c-dependent counts as a prior in the form of a Dirichlet
function, which were combined with integer data counts in
a multinomial likelihood to produce posterior estimates also in
the form of Dirichlet functions (Dunbrack and Cohen, 1997). As
shown in Figure 4B, this approach produced reasonable esti-
mates for all values of f and c, but because of the integer counts
in the Dirichlet function, the posterior estimateswere very bumpy
as a function of f and c.

Figure 3. Rotamer Ramachandran Densities and Their Corresponding Backbone-Dependent Rotamer Probabilities from the New 2010
Rotamer Library
The top view shows smoothed Ramachandran PDFs of the backbone conformation (f, c) for g+, t, and g" rotamers (left to right) of Val computed with adaptive

kernel density estimation. f and c are plotted along x axis and y axis, respectively, within their standard limits of ("180!, 180!). The PDFs are plotted along the z

axis and scaled in 1/radian2. For every rotamer the density integrates to 1 over the whole Ramachandran area. The bottom view illustrates corresponding 2010

smooth backbone-dependent rotamer probabilities, calculated by inverting the Ramachandran densities in the top row with Bayes’ rule. The probabilities of all

three g+, t, and g" rotamers sum up to 1 for every (f, c). The Val bandwidth radius is 5!, and the concentration parameter, k, is 120. These values match the 5%

step down from the optimal log-likelihood score for additional smoothness with the best SCWRL4 prediction rates (see Results).
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In this work we are also using kernels to estimate the
f,j-dependent densities of each rotamer, but instead of com-
bining them with data counts, we use the kernels directly to
determine density estimates for each rotamer and Bayes’ rule
to determine the rotamer probabilities. In our first attempt we
used kernel density estimates with fixed and constant kernel
widths for all data points. The resulting rotamer probability for
the serine g+ rotamer, calculated with a concentration parameter
in the vonMises kernel function of k = 309 (a bandwidth radius of
3.3!) is shown in Figure 4C. It reproduces the form of the
Bayesian estimates, but the transitions are rather sharp, and it
is very sensitive to outlier data in the f,c space. A wider radius
for the non-AKDE data produces smoother estimates than

Figure 4. Rotamer Probability Estimates
Produced by Several Methods and Smooth-
ing Effect of Adaptive Kernel Density with
Narrower or Wider Bandwidths
Nonoverlapping 10! 3 10! bin histogram (A), 2002

Bayesian (B), nonadaptive kernel density (C), and

adaptive kernel density (D–F) estimates are shown

forP(r = g+ j f, c, aa =Ser). The histogram estimate

(A) depicts only the bins with at least five points of

any rotamer per bin. The non-AKDE (C) has a fixed

bandwidth (k = 309, bandwidth radius, R = 3.3!),

the same as for (D). The AKDEs with widening

geometric-mean kernel bandwidth are ordered

from (D)–(F). The maximum log-likelihood (k = 309,

R= 3.3!), 5%step-down (k= 102,R= 6!), and 20%

step-down (k = 29, R = 11!) bandwidths are shown

in (D), (E), and (F), respectively.

shown in Figure 4C, but such a radius flat-
tens out the rotamer probabilities too
much, leading to inaccurate probabilities
even when data are plentiful (not shown).
To reduce the effect of outliers, we then

employed AKDEs in which the kernel
widths vary with the local density of data
points. At higher densities, the kernels
are narrower, and at lower densities,
such as in the vicinity of outliers, the
kernels are wider, thus spreading out
and minimizing their effect on the density
estimates. The widths of the kernels are
determined by a concentration parameter
scaled with the square root of the local
density of points, bf ðf;jÞ, obtained from
some pilot estimate (in this case the
nonadaptive kernel density). With the
base kernel concentration parameter k
optimized to maximize the log likelihood
ofPðrjf;jÞusing10-fold cross-validation,
we calculated the rotamer probabilities
shown in Figure 4D. The optimized value
for serine is k = 309, so that the nonadap-
tive and adaptive rotamer probabilities
in Figures 4C and 4D use the same value
of k. The adaptive version is much
smoother than the nonadaptive version.

While eliminating the effects of the outliers, the changes in
rotamer probability in Figure 4D may be sharper than optimal
for programs like Rosetta that depend on the first derivatives
of log Pðrjf;jÞ. In order to increase the smoothness, we em-
ployed a penalizedmaximum likelihood procedure for optimizing
the concentration parameter k. This is a common procedure in
density estimations (Eggermont and LaRiccia, 2001). The total
log-likelihood expression can be modified in a number of ways.
We use a simple approach that penalizes the average log likeli-
hood by a fixed percentage of the range from its maximum val-
ue to its minimum value. In Figures 4E and 4F, we show the g+

rotamer of serine calculated with concentration parameters
such that the average log likelihood is 5% and 20% less than
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its full range shown in Figure 4D. Thus, Figures 4D–4F illustrate
the smoothing effect of the widening bandwidth radius (2!, 5!,
and 11!) of the AKDEs on the rotamer probability estimates.
The methods for choosing the optimized k and the step-down
values of k are illustrated in Figure S2. The optimized values of
k and the bandwidth radius and the same values for the 5%
step down in the average log likelihood are given in Table S3.

The appropriate choice of smoothing level may depend on the
application for which the rotamer library is intended. We explore
this further below.
For the rarer rotamers (those with less than 25 examples in the

data set), we approximated the rotamer probability density
rðf;jjrÞ with rotamer data of the same side-chain type with
one or more fewer degrees of freedom. In Figure 5, we present

Figure 5. A Complete Set of Backbone-Dependent Rotamer Probabilities for Leucine Derived from AKDEs of the New 2010 Rotamer Library
Leu demonstrates strong variation in its rotamer preferences both in the backbone-dependent and backbone-independent rotamer libraries. Some of its

rotamers are restricted everywhere on the (f,c) map, due to strong clashes of the side-chain conformations with its own backbone. The { g+, g" } rotamer has only

10 data points in our data set, whereas the total number of leucines is 64,329. The rare rotamer fix is used to calculate the Ramachandran probability density for

the { g+, g" } rotamer using only the { g+ } data.
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the rotamer probability estimates for the nine rotamers of
leucine. For leucine, the {g+, g"} probability density was calcu-
lated with the {g+, X} data of leucine. The factor P(r) in Equation 1
is calculated based on the actual counts of the {g+, g"} rotamer,
whereas rðf;jjrÞ is calculated with the r = g+ data, producing
a reasonable estimate of Pðr =g+ ;g"jf;jÞ.

Rotameric Side-Chain Degrees of Freedom:
Backbone-Dependent KR of c Means and Variances
As with the backbone-dependent rotamer probabilities, we inves-
tigated a number of approaches in calculating the backbone-
dependent means and standard deviations of side-chain dihedral
angles for the rotameric degrees of freedom. In Figures 6 and 7,

Figure 6. Rotameric c Mean Estimates
Calculated with Several Methods and
Smoothing Effects of Query-Adaptive KRs
Nonoverlapping 10! 3 10! bin average (A), 2002

Bayesian (B), nonadaptive KR (C), and query-

adaptive KR (D–F) estimates are shown for m (c j f,
c, r = g+, aa = Cys). The 10! 3 10! bin average has

only the bins with at least five g+ rotamers per bin.

The nonadaptive KR (C) has a fixed bandwidth (k =

54, bandwidth radius, R = 8!), the same as for (D).

The query-adaptive KR estimates with widening

geometric-mean kernel bandwidth are ordered

from (D)–(F). The maximum log-likelihood (k = 54,

R = 8!), 5% step-down (k = 29, R = 11!), and 20%

step-down (k = 17, R = 14!) bandwidths are in (D),

(E), and (F), respectively.

respectively,weshowthe resultsofseveral
different ways of calculating the mc1 and
sc1 estimates for g+ rotamer of cysteine:
mðc1jf;j; r =g+ Þ and sðc1jf;j; r =g+ Þ.
The simplest way is to average c1 points
and also calculate their standard deviation
within nonoverlapping 10! 3 10! bins. As
with the histogram approach to rotamer
probabilitiesdescribedabove, thismethod
produces very crude and spiky estimates
of mc1 and its sc1, as observed in Figures
6A and 7A. In the binswith fewdata points,
their means and deviations are statistically
unreliable.
In the 1997 and 2002 rotamer libraries,

we combined f-dependent and c-depen-
dent estimates of the mean angles and
their varianceswith the data in overlapping
20! 3 20! bins in a Bayesian estimation
procedure. The 2002 rotamer library esti-
mates are shown in Figures 6B and 7B.
These estimates are extremely bumpy
due to the large effect of a small number
of side chains when the data are sparse.
A nonadaptive KR scheme also produces
bumpy and extreme estimates, as shown
for a bandwidth of 8! in Figures 6C and
7C. This kernel captures very few data
points at most query points and produces

unreliable estimates of mean and standard deviation. The non-
adaptive KR with a much wider bandwidth (not shown) is not as
noisy but loses valuable features in the populated areas of (f, c).
Thus, we moved to an adaptive scheme, applying query-

adaptiveKRtoestimate the rotamericcmeansand their variances.
The bandwidth varies as a function of the density local to the query
point, rather than by the density around the data points, as used in
the density estimates described earlier. We found that query-
adaptive kernels provided regression curves and surfaces that
more accuratelymodeled the observable variations in thec angles
as a function of f and c than data-adaptive kernels.
For rotameric backbone-dependent c mean and variance,

we utilized the sum of the squared residuals between the
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experimental c points and the surface of the mean estimate as
the objective function for minimization. The minimization was
carried out for each c angle of each rotamer separately. The
optimal concentration parameters and their corresponding
bandwidths used in the KR can be found in Table S3.
As with the kernel density estimates, we also applied a simple

form of penalized KR, by stepping down the objective function
by 2%, 5%, 10%, and 20%. The values of k that result from the
5% step down are also given in Table S3. Figures 6D–6F and
7D–7F reveal the smoothing effect of the widening bandwidth
radius (7!, 10!, and 13!) of the query-adaptive KR of mc1 and
sc1, respectively. Higher values of k produce bumpier regression
surfaces, and lower k values produce flatter, smoother surfaces.

Figure 7. Rotameric c Standard Deviation
Estimates Calculated with Several Methods
and Smoothing Effects of Query-Adaptive
KRs
Nonoverlapping 10! 3 10! bin (A), 2002 Bayesian

(B), nonadaptive KR (C), and query-adaptive KR

(D–F) estimates are plotted for s (c j f, c, r = g+,

aa = Cys). The 10! 3 10! bin estimate is shown

only in the bins with at least five g+ rotamers per

bin. Other information and parameters are the

same as in Figure 6.

As in the case with the rotamer probabili-
ties, the appropriate level of smoothing
may depend on the application.
For some (f,c) values, clashes between

the side-chain Xg atom and backbone
atoms whose positions are dependent on
f andcpush thec1means away from their
canonical values in order to relieve the
clash (Dunbrack, 2002; Dunbrack and
Cohen, 1997). For instance the g+ rotamer
shown inFigures6and7hassteric clashes
withbackboneatomsOiandNi+1whenc is
near 120! and "60!, respectively, and
these interactions lead to a deviation in
the c1 dihedral angle means. In the un-
populated regions of the Ramachandran
map, the query-dependent KRs return to
the backbone-independent mean value,
which is a reasonable estimate because
the angles do not usually vary more than
about 15! from these values in any case.
These are the flat areas in the mc1 and
sc1 KR surfaces in Figures 6 and 7. The
sc1 estimates are also larger when the
side-chain and backbone atoms clash.

Nonrotameric Side-Chain Degrees
of Freedom: Backbone-Dependent
KR of c Angle Densities
The terminal dihedral angles of Asn, Asp,
Gln, and Glu have very broad distribu-
tions, when considered independent of
f and c, as shown for Asn in Figure 1B

and Gln in Figures 1D–1F. The terminal dihedral angles of the
aromatic amino acids have distributions broader than typical
rotameric degrees of freedom, and these are somewhat asym-
metric, as shown for Trp in Figure 1C. Therefore, the normal
model used for the rotameric degrees of freedom as for Met c1

in Figure 1A (regression to a mean and standard deviation) is
inappropriate for these degrees of freedom, and therefore, we
refer to them as ‘‘nonrotameric.’’ The distributions of these
nonrotameric angles vary significantly with f and c. However,
because they cannot be modeled parametrically, they must be
modeled with nonparametric density estimates. Therefore, we
seek a method to determine a regression of the density of an
angle onto the explanatory variables f and c.
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In the 1997 and 2002 rotamer libraries, nonrotameric c angles
were modeled in a manner very similar to the rotameric degrees
of freedom despite the deficiencies of such modeling. This was
accomplished by defining bins for each ‘‘rotamer,’’ establishing
prior estimates formed from a product of individual f-dependent
and c-dependent distributions, and adding counts of c2 in each
bin from the neighborhood around each f,j grid point. In the
2002 library, Asn had six c2 bins for each c1 rotamer over
360!, whereas Gln had four bins for c3. Asp and Glu had three
bins over 180!, whereas Phe and Tyr had two bins. His and Trp
each had three bins of 120! each. For each bin we calculated
mean dihedral angles and their variances as well as relative pop-
ulations. This is shown in the first row of Figure 8 for the {g+,t}
rotamer of Gln for three different f,c positions: near the a helix

region ("60!, "10!); near the b sheet region ("150!, 180!); and
near the polyproline II region frequently occupied in loops
("80!, 180!). Each bar is located at the mean value of each
bin, and the horizontal bars indicate the standard deviation of
the data in that bin, which is proportional to the bin widths.
In the new 2010 rotamer library, we take a different approach

and model the nonrotameric c as continuous distributions as a
function of (f, c) for every rotamer combination of the rotameric
degrees of freedom of the residue. For example, Gln has three
side-chain degrees of freedom: rotameric c1, c2, and the
terminal nonrotameric c3. Therefore, we calculate backbone-
dependent c3 density distributions for each of the nine c1,c2 ro-
tamers of Gln. We accomplish this by applying query-adaptive
kernels to f and c and data-adaptive kernels to the nonrotameric

Figure 8. Backbone-Dependent Treatment of Nonrotameric Side-Chain c: 2002 Rotamer Library, 2010 Density Model, and 2010 Discrete
Model
Backbone-dependent modeling of nonrotameric c3 of c1,c2 rotamer = { g+,t } of Gln using Bayesian formalism of the 2002 rotamer library (top), 2010 query-

adaptive KR of densities (middle), and 2010 binned ‘‘rotameric’’ model (bottom). These three models are provided at three different selected (f, c) locations:

("60!,"10!), ("150!, 180!), and ("80!, 180!), indicated on the Ramachandran { g+, t } density insets in the bottom row. The top and bottommodels are binned or

‘‘rotameric,’’ whereas the middle model is continuous density. The ‘‘rotameric modeling’’ of the nonrotameric c3 includes: r3 probabilities (heights of the bars);

P(r3 jf, c, r12 = { g+, t }) summing up to 1; c3means (positions of the bars); m(c3 jf, c, r123); and c3 standard deviations (lengths of the horizontal bars at the tip of the

bars), s(c3 jf, c, r123).
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cn to estimate rðcnjf;j; r"nÞ, where n indicates the terminal dihe-
dral angle, and r"n indicates the rotamer of the nonterminal
degrees of freedom. In the middle panel of Figure 8, the Gln c3

density of the r"n = fg+ ; tg rotamer is evaluated every 1! for the
same three (f, c)s as in the first row for the 2002 library. The
distributions show that the modes are located at different posi-
tions for each f,j point, the peaks are asymmetric, and in one
case the distribution is bimodal. The curves roughly parallel the
2002 rotamer library, if the curves are integrated over 90!

regions. For practical applications we report backbone-depen-
dent nonrotameric cn density every 10!.
To support existing applications such as SCWRL, which rely

on our older 1997/2002 libraries and their format, for the new
rotamer library, we also create a new more detailed ‘‘rotameric’’
model for nonrotameric c. To meet this goal and to accommo-
date a more complex distribution structure, we increased the
number of bins for the nonrotameric c (Table S1). The rotamer
bin width is decreased to 30!. The backbone-dependent
probabilities are estimated by the product of the integrated
continuous density over each bin and the corresponding back-
bone-dependent probabilities of r"n (see Equations S39 and
S40). The vertical bars are centered at the means, and their
horizontal bars specify the standard deviations of each of the
12 c3 rotamers. These are estimated by integrating a product
of the c3 density and corresponding function over each of 12
bins (Equation S39). Thus, Figure 8 illustrates binned and contin-
uous models of nonrotameric c angles and how the binned
modeling has been changed since the 2002 analysis.
We also provide a movie of the probability density of c2 for the

g+ rotamer of Asn as a function of (f,c) (Movie S1). Additional
figures and movies are available at http://dunbrack.fccc.edu.

Using the Backbone-Dependent Rotamer Library
in Structure Prediction
The methods we have developed using kernel density estimates
and KRs have allowed us to develop smooth and statistically
reliable backbone-dependent rotamer libraries. We can adjust
the level of smoothing for different applications by adjusting
the penalties in the objective functions for the rotamer probabil-
ities and regressions. To choose a reasonable set of values, we
tested a number of different libraries with our side-chain predic-
tion program SCWRL4 (Krivov et al., 2009) and Rosetta (Rohl
et al., 2004b). For SCWRL4 benchmarking we used the same
testing set of 379 high-resolution protein monomers as in the
original SCWRL4 work with a resolution cutoff of 1.8 Å and
maximum mutual sequence identity of 30%. For Rosetta we
used a set of 50 monomeric, ligand-free proteins without disul-
fides and with resolution of 1.6 Å or better and less than 20%
mutual sequence identity.
In the side-chain prediction literature, a side-chain torsion

angle is considered correctly predicted if its value is within 40!

from the experimental one. Using this traditional definition, in
Table 1, we compare the best 2010 library versus the older
2002 library in SCWRL4 prediction rates based on the flexible
rotamer model (FRM) for each individual degree of freedom
(c1, c2, c3, and c4) and the overall c accuracy. The best 2010
rotamer library gives an overall increase of +0.67% in c angle
predictions on a test set of 379 proteins. This is a weighted
average over c1, c1+2, c1+2+3, and c1+2+3+4 accuracies (see
Equations S42 and S43). Although this is a modest increase,
many highly populated side-chain types are already at very
high accuracies and cannot be improved much further. Except
for Pro ("0.3%) and Asn ("0.2%), the best 2010 library has

Table 1. 2002 versus Best Smooth 2010 Rotamer Libraries: Benchmarking Based on SCWRL4 Side-Chain Conformation Prediction
Accuracy

c Angles TRP PHE GLN GLU TYR SER ARG HIS LEU MET CYS THR ASP ILE VAL LYS ASN PRO ALL

Best ’10 c1 94.1 98.1 85.0 81.0 97.1 75.4 83.1 93.5 96.4 90.2 93.2 94.3 90.5 98.5 96.9 82.8 91.7 87.1 90.15

Old ’02 92.9 97.6 84.6 80.1 96.5 74.3 83.3 93.9 95.9 90.4 92.8 94.0 90.6 98.4 96.7 82.6 91.7 87.3 89.83

D(Best,Old) +1.2 +0.5 +0.4 +1.0 +0.6 +1.1 "0.2 "0.4 +0.5 "0.2 +0.4 +0.4 "0.1 +0.1 +0.2 +0.3 0.0 "0.2 +0.32

Best ’10 c1+2 84.6 96.6 71.1 68.0 94.8 72.9 66.4 91.9 81.9 84.7 91.0 72.3 76.7 83.9 81.73

Old ’02 78.9 93.7 71.0 67.5 92.9 72.5 64.6 91.2 81.9 83.8 90.6 72.5 77.0 84.3 81.01

D(Best,Old) +5.7 +2.9 +0.1 +0.6 +1.9 +0.5 +1.8 +0.8 0.0 +0.9 +0.4 "0.2 "0.3 "0.4 +0.72

Best ’10 c1+2+3 48.8 52.4 51.0 64.2 58.4 54.01

Old ’02 44.5 49.3 49.6 62.5 58.7 52.05

D(Best,Old) +4.2 +3.1 +1.5 +1.7 "0.3 +1.96

Best ’10 c1+2+3+4 38.1 39.9 38.99

Old ’02 36.3 39.6 38.01

D(Best,Old) +1.8 +0.2 +0.98

Best ’10 call 89.3 97.4 68.3 67.1 96.0 75.4 61.3 80.0 94.1 78.8 93.2 94.3 87.6 94.8 96.9 63.4 84.2 85.5 83.72

Old ’02 85.9 95.7 66.7 65.6 94.7 74.3 60.4 79.2 93.5 78.3 92.8 94.0 87.2 94.5 96.7 63.4 84.3 85.8 83.04

D(Best,Old) +3.4 +1.7 +1.6 +1.5 +1.2 +1.1 +0.9 +0.7 +0.6 +0.5 +0.4 +0.4 +0.4 +0.3 +0.2 0.0 "0.2 "0.3 +0.67

The performances of the new 2010 rotamer libraries were compared with the 2002 rotamer library. SCWRL4 was run on a set of 379 high-resolution

proteins used previously (Krivov et al., 2009). The FRM of SCWRL4 was used, and crystal symmetry was used in the calculations (all side chains in all

copies of the asymmetric unit were calculated simultaneously). Accuracy was evaluated on all side chains in the proteins excluding those with electron

density in the bottom 25th percentile for each residue type. A predicted side-chain c is considered correct if its value lies within 40! from its experi-

mental value. For each residue type the 2002 and 2010 accuracies are provided for each individual c angle. call is an absolute average of all degrees

of freedom for each residue (see Supplemental Experimental Procedures). ALL is an average accuracy among all 18 standard residue types. Percent-

ages in bold type show improvements in prediction rate; those in italics are decreases in prediction rate.

Structure

Smoothed Backbone-Dependent Rotamer Library

Structure 19, 844–858, June 8, 2011 ª2011 Elsevier Ltd All rights reserved 853

http://dunbrack.fccc.edu


performance better than 2002 for all residues types. Several
dihedral angles have strong improvements in prediction rates,
for example Trp c2 +6%, Gln c3 +4%, Phe c2 +3%, Glu
c3 +3%, Ser c1 +1%, Met c3 +2%, Arg c3 and c4 +2%, and
Tyr c2 +2% and Trp c1 +1%.

To create smoother rotamer libraries from the 2010 data set,
we determined lower k’s (smoother functions) by finding the k
that had a lower value of the objective function by some
percentage of its range (i.e., the maximum value minus the
minimum value over all k; see Figure S2 for an example). For
SCWRL4 the best 2010 library is the one with the 5% step
down in the objective functions from the optimal k values.
Increased smoothness (step downs of 10%, 20%, 25%) or
reduced smoothness (2% or fully optimized) produces slightly
lower prediction rates as shown in Table 1. For a more stringent
definition of correct c angles, within 10!, SCWRL4 demonstrates
more improvement for 2010 versus 2002, a total of +1.1% (data
not shown).

Because the new rotamer libraries were developed in part
to improve Rosetta performance when backbone flexibility is
modeled, we tested Rosetta’s energy minimization protocols
with the various rotamer libraries. After fitting the structures
with standard bond lengths and bond angles, we separately ran
two types of minimization tests on: FastRelax and ClassicRelax
on the idealized structures generating 100 decoys for each. The
FastRelax protocol (Tyka et al., 2011) consists of five rounds of
the following:multiplying the repulsive van derWaals parameters
by a scale factorC (0 <C% 1); Monte Carlo simulated-annealing
repacking of side chains using the rotamer library (replacing all
side chains with random rotamers, several times over, with
Metropolis criterion acceptance); and then continuous energy
minimization of the backbone and side chains. The factor is

ramped up from 0.02 to 1.0 over four steps in each round. The
lowest energy structure when the scale factor is 1.0 is saved as
a decoy. TheClassicRelax protocol (Bradley et al., 2005) consists
ofmany roundsof small backbone perturbationmoves (2!–3! inf
and c) and complete side-chain repacking, followed by back-
bone and side-chain continuous energy minimization. The
FastRelax protocol is the one currently recommended for high-
resolution refinement in Rosetta, but we decided to test the older
protocol as well to see if it behaved differently. The results are
shown in Table 2.
The goal of these calculations is to perturb the backbone and

side chains from the native structure and to determine whether
the energy function minimization is able to bring or keep the
structure as close to native as possible, as measured by back-
bone and full-atom rmsd values. For Rosetta, FastRelax we
gained a 2.2% and 1.8% improvement for the optimized 2010
library relative to 2002 for the average backbone and full-atom
rmsd values, respectively. For ClassicRelax, we achieved the
best results with the smoother 5% step-down rotamer library.
For this library the backbone and full-atom rmsd values from
native are 2.1% and 0.8% lower than the results with the 2002
rotamer library, respectively.
The FastRelax decoys achieved the best side-chain accura-

cies with the optimized 2010 library compared to the 2010
libraries with additional smoothing. For cutoffs for correct pre-
dictions of 40! and 10!, the absolute average accuracies over
all dihedral angles were 73.3% and 56.4%, which is an improve-
ment of 0.5% and 1.0% when comparing to the 2002 library,
respectively. The ClassicRelax decoys also achieve the best
side-chain accuracies with the optimized 2010 library, with
average absolute accuracies of 76.3% (40!) and 58.9% (10!).
SCWRL4 with crystal symmetry but without removing side

Table 2. Effects of 2010 Rotamer Library Smoothing in SCWRL4 and Rosetta

2002 Optim 2%Y 5%Y 10%Y 20%Y 25%Y 2009it10

Side-Chain Prediction

SCWRL4 D(’10,’02), asymm. ED25-100% 83.04% +0.57% +0.61% +0.67% +0.40% +0.11% "0.08% N.D.

SCWRL4 D(’10,’02), symm., ED0-100% 79.33% +0.55% +0.59% +0.64% +0.39% +0.11% "0.11% N.D.

Rosetta FastRelax D(’10,’02), symm., ED0-100% 72.82% +0.48% +0.21% +0.10% "0.09% "1.04% "1.44% "1.45%

Rosetta ClassicRelax D(’10,’02), symm., ED0-100% 76.12% +0.21% +0.13% 0.00% "0.12% "0.81% "1.12% "1.57%

Rmsd Differences

Rosetta FastRelax: D(’10,’02)/’02 (backbone) 1.112 –2.23% –0.37% –0.19% +0.04% +0.67% +1.36% +0.63%

D(’10,’02)/’02 (all atoms) 1.596 –1.83% –0.49% –0.58% –0.19% +0.76% +1.22% +1.01%

Rosetta ClassicRelax: D(’10,’02)/’02 (backbone) 1.081 –1.21% –0.67% –2.06% –1.35% +0.64% +2.41% +0.18%

D(’10,’02)/’02 (all atoms) 1.517 –0.02% +0.28% –0.76% –0.21% +1.36% +2.36% +1.91%

TotalScoreMinusDun

Rosetta FastRelax: D(’10,’02) –382.28 1.783 –0.004 –1.035 –2.436 –4.884 –5.645 –1.965

Rosetta ClassicRelax: D(’10,’02) –379.00 0.871 –0.692 –1.548 –2.685 –5.068 –5.504 –1.970

2010 library names are listed in the first row. 2009it10 is a modified version of a developmental rotamer library created by using similar methods (with

some important differences) in 2008. It is distributed with Rosetta3 andwas recently described by Song et al. (2011). For side-chain accuracy the abso-

lute average percent accuracy is given for the 2002 library, and the differences from those values are given for the other libraries (2010 library–2002).

For rmsd differences themean rmsd in angstroms (Å) is given for the 2002 library, and the percent differences from 2002 are given for the 2010 libraries.

For TotalScoreMinusDun, themean values are given for the 2002 library, and the differences (in Rosetta score units) are given for the 2010 libraries. For

side-chain accuracy, ‘‘symm’’ indicates that Asn, His, and Gln terminal dihedrals were treated as symmetric, whereas ‘‘asymm’’ indicates that they are

treated like other dihedral angles. ED25-100% indicates that only side chains with electron density in the 25th–100th percentile were included in the

accuracy assessment. ED0-100% means all side chains were included. Better numbers are in bold type (higher side-chain accuracy, lower rmsd

values), whereas worse numbers are in italic type. N.D., not done. See also Figure S3.
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chains in the bottom 25th percentile achieves an average abso-
lute accuracy of 80.0% (40!) and 57.9% (10!) with the 5% step-
down library. The crystal symmetry is responsible for about a 2%
increase in average absolute accuracy (Krivov et al., 2009).
Note that in these calculations, neither SCWRL4 nor Rosetta

has been optimized to work with the 2010 libraries. The SCWRL4
calculations used constant parameters for all residue types and
all rotamer libraries. The distributed version of SCWRL4, by con-
trast, has optimized values for several parameters for each residue
type. The Rosetta calculations used the standard ‘‘score12’’
scoring function, except for the different rotamer libraries. Song
et al. (2011) have recently reported an optimization of Rosetta’s
energy function for an earlier version of the rotamer libraries
described here. They modified the rotamer library to compensate
for doubly counted interactions such as side-chain/backbone
hydrogen bonding and steric interactions. We tested one version
of this rotamer library distributed with Rosetta3.1, ‘‘2009it10’’; the
results are shown in the last column of Table 2. Its side-chain and
rmsd performances are worse than both the 2002 library and the
fully optimized 5% and 10% step-down libraries presented here.
The backbone-dependent rotamer library is one component

(designated ‘‘fa_dun’’ in Rosetta output) of several in the Rosetta
scoring function, which includes repulsive and attractive van der
Waals interactions, Ramachandran energies, solvation terms,
and hydrogen bonding. We analyzed the scoring function values
for the decoys generated with the two relax protocols and the
various rotamer libraries, shown at the bottom of Table 2. As
the smoothness is increased, the nonside-chain energy terms
(‘‘TotalScoreMinusDun’’) optimized to lower values. This may
be due to flatness of the smoother rotamer libraries, although
the dynamic range of the smoother libraries is not significantly
less than the fully optimized rotamer library.
One featureof thenewrotamer libraries that improves the results

of Rosetta is the nature of the nonrotameric degrees of freedom.
For the 2002 library (‘‘dun02’’ in Rosetta protocols), the nonrota-
meric degrees of freedom had between two (Phe, Tyr) and six
(Asn) bins for rotamer probabilities, means, and standard devia-
tions. In Rosetta, when the 2002 library is used, a harmonic energy
term isapplied to thesemeanvalueswitha forceconstant inversely
related to the standarddeviation.When thedevelopmental version
of the rotamer libraries described here was implemented in
Rosetta3 (‘‘dun08’’ flag in Rosetta) (Leaver-Fay et al., 2011),
Rosetta was modified to use the continuous probability estimates
for the nonrotameric degrees of freedom. Thus, these dihedral
angles are free to change over a wide range in the smooth, back-
bone-dependent potentials, as shown for Gln in Figure 8. As
a result, the output distributions of c angles for these degrees of
freedom are much closer to native structures than the results of
the 2002 library, which are discretely distributed The distributions
of c2 for the decoys generated by FastRelax for the 2002 and
optimized 2010 libraries are shown in Figure S3. The results may
be compared to the backbone-independent c2 distributions for
Asn shown in Figure 1B.
Further testing is needed of the different rotamer libraries in

various protocols (ab initio structure prediction, comparative
modeling, docking, protein design, etc.) to determine which is
most suitable for each application. On our website, http://
dunbrack.fccc.edu, we provide access to the full range of
rotamer libraries described here, as well as images and movies

of the distributions. For most purposes the 5% step-down library
may be most appropriate because it provides a good trade-off
between appropriate details and smoothness of the probability
distributions.

DISCUSSION

The backbone-dependent rotamer libraries we have developed
previously have found uses in many different applications in
protein structure prediction (Andrusier et al., 2007; Bower et al.,
1997; Hartmann et al., 2007; Krieger et al., 2009; Krivov et al.,
2009; Liang and Grishin, 2002; Mendes et al., 2001; Rohl
et al., 2004a; Smith et al., 2007; Zhang et al., 2004) and protein
design (Calhoun et al., 2003; Dahiyat and Mayo, 1997; Kuhlman
and Baker, 2000; Pokala and Handel, 2005; Saraf et al., 2006;
Stiebritz and Muller, 2006). In these applications both the back-
bone-dependent probabilities and the backbone-dependent
dihedral angles have made important contributions. Therefore,
we have taken great care in producing a new backbone-depen-
dent rotamer library, testing many different ways of estimating
theprobabilitiesand regression functions thatmakeup the library.
A number of different technical obstacles have been overcome

in developing the new rotamer library. In our previous libraries we
did not use methods that reliably produced smoothly varying
estimates of the rotamer probabilities and dihedral angles with
backbone f and c. The kernel density estimates and regressions
used here coupled with the penalized maximum likelihood opti-
mization of the smoothing parameters have produced smooth,
reliable estimates of the library values. Filtering by electron
density and AKDEs and regressions reduced the effects of
outliers in Ramachandran space.
An important innovation in this rotamer library is the treatment

of nonrotameric degrees of freedom. The previous model of a
small number of c angle bins for these dihedrals sometimes
resulted in likely artifacts in structure prediction and design.
For instance, Rosetta previously placed harmonic energy func-
tions on each of the ‘‘rotamers’’ of cn, which for the amides
and carboxylates in particular created potential functions with
four or six minima with large energy barriers in between.
However, these degrees of freedom do not fit a rotamer model
of discrete side-chain conformations with relatively small dihe-
dral angle variances. Instead, they have widely distributed
densities and, especially in the case of Asp and Asn, strong
backbone-dependence. In the new rotamer library, smooth
densities are achieved with a novel combination of query-depen-
dent adaptive kernels on f,j and data-dependent adaptive
kernels on the c angles, effectively the regression of an angular
density onto two angular explanatory variables.
Two other studies have presented analyses similar to that of

the backbone-dependent rotamer library. Amir et al. (2008)
used the data from our 2002 library (850 proteins) and cubic
splines to produce both joint and conditional probability distribu-
tions of f,j, and c angles. Such an analysis does emphasize
smoothness of the probability distributions. Harder et al. (2010)
have recently developed a generative model of protein side-
chain conformations called BASILISK. It generates samples of
side-chain dihedral angles for given input backbone dihedral
angles. It is also capable of returning a log-likelihood value for
any query side-chain conformation (c1, c2, c3, c4) given
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a backbone conformation. Because it ties together c angle prob-
abilities of different residue types, it does have incorrect ordering
of rotamer probabilities for some residues, such as serine, for
which the g" c1 rotamer is not the most common.

Neither of these programs uses the rotamer model and, thus,
may not be easily incorporated into programs that utilize such
models to enumerate all possible rotamers in structure predic-
tion and design. It should be noted that our methods for deter-
mining the nonrotameric c angle densities can be used for any
of the side-chain degrees of freedom, not just the nonrotameric
ones. So, for instance it is possible to create estimates (including
multidimensional estimates) for rðcjf;jÞ for rotameric degrees
of freedom independent of rotamer state. Such a model would
include changes in probability of the rotamers, the positions of
modes in the density, aswell as covariance of the dihedral angles
with respect to each other and the backbone dihedral angles.We
are currently exploring the utility of such probability density
estimates.

We believe the new backbone-dependent rotamer library has
a number of useful characteristics that will make it useful in a
variety of applications in protein structure determination, predic-
tion, and design.

EXPERIMENTAL PROCEDURES

The full methods are given in the Supplemental Experimental Procedures.

Deriving Backbone-Dependent Rotamer Probabilities
from Ramachandran Densities of Each Rotamer from AKDEs
We want to determine the rotamer probabilities, Pðrjf;j; aaÞ, for each amino

acid type, aa, and each rotamer (r), so that:

X

r

Pðrjf;j; aaÞ= 1 (2)

for any values of (f, c). Using Bayes’ rule (see Equation 1), these probabilities

can be derived from the Ramachandran PDFs of each rotamer, rðf;jjr; aaÞ
and the backbone-independent frequencies of each rotamer, PðrjaaÞ. The
sum in the denominator of Equation 1 is over all rotamers of a given residue

type. PðrjaaÞ can be calculated easily from the observed frequencies of each

rotamer in the data set. However, to calculate accurate and smooth estimates

of Pðrjf;j; aaÞ, we require accurate and smooth estimates of rðf;jjr; aaÞ. We

drop ‘‘aa’’ from the formulas below. Also, we denote probabilities with P and

probability densities with r.

Smooth estimates of rðf;jjrÞ can be calculated from kernel density esti-

mates. A kernel is a nonnegative function that integrates to 1. In one dimension

a kernel density estimate may be written:

bf hðxÞ=
1

N

XN

i = 1

Khðkx " xikÞ; (3)

where K is the kernel function, N is the number of data points, and h is the

kernel bandwidth. For instance if the kernel is Gaussian, h is the square root

of the variance, or s.

Because Ramachandran probability density is defined for the backbone

torsion angles f and c as two arguments, we use a two-dimensional kernel

density estimate using the von Mises distribution as the kernel. The nonadap-

tive or fixed-bandwidth KDE in two dimensions for Ramachandran data can be

written as the sum over products of f- and c- von Mises kernels for Nr data

points of rotamer type, r:

rðf;jjrÞ =
1

Nr

XNr

i = 1

Kh

!
kf" fik

"
Kh

!
kj" jik

"

=
1

4p2Nr

XNr

i = 1

1

ðI0ðkÞÞ2
exp

#
k
!
cos

!
f" fi

"
+ cos

!
j" ji

""$
:

(4)

In this case,
ffiffiffiffiffiffiffiffi
1=k

p
defines a radius of the two-dimensional hump covering

67% of the kernel density. I0 is the Bessel function of the first kind of order

0; it normalizes the kernels to 1. For simplicity we do not place a caret on

top of kernel density or KR estimates.

To reduce the effect of outliers, we use AKDEs in which the bandwidth

parameter (k) varies across the sample data points, depending on the local

density of the data (Abramson, 1982; Breiman et al., 1977). For the Ramachan-

dran density the AKDE is:
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1
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: (5)

The adaptive parameters li are based on a pilot estimate of the Ramachan-

dran density for the residue type as a whole:
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: (6)

For the pilot estimate, we use the non-AKDE given in Equation 4. The factor g

is simply the geometric mean of the pilot density estimates at the N data

points. We use a = 1/2, a value that is commonly used to regulate the magni-

tude of how much sample points from the sparsely populated regions have

their bandwidths expanded and how much those in the populated regions

have their bandwidths shrunk relative to the geometric mean sample point

(Abramson, 1982; Silverman, 1986).

We chose the parameter k for each residue type using cross-validation of

the average log likelihood of the rotamers as described in the Supplemental

Experimental Procedures.

Adaptive KR for the Rotameric c Angles and Variances
The second major component of the rotamer library consists of the backbone-

dependent population means, m, and standard deviations, s, of the available

side-chain dihedral angles (c1, c2, c3, and c4) for each rotamer of the 22

residue types. We model the regression relation between the response vari-

able, c and the explanatory variables (f, c):

ci =mðfi ;ji jrÞ+ n
1
2ðfi ;jiÞ3i ; (7)

where mðfi ;ji jrÞ is the unknown regression function, nðfi ;jiÞ is the variance,

and 3i are random observation errors normally distributed with a mean of

zero and variance 1. Given that side chains in backbone-constrained confor-

mations experience greater uncertainty in their c angles, we assume the

standard deviation of the observation errors varies as a function of f and c;

that is, the model is heteroscedastic. In this case the regression function is

the conditional expectation or population mean of c given the backbone

conformation:

mðx; yjrÞ=Eðcjf= x;j= y; rÞ=mðcjf= x;j= y; rÞ (8)

nðx; yjrÞ=Varðcjf= x;j= y; rÞ= s2ðcjf= x;j= y; rÞ (9)

Because we do not expect mðcjf;j; rÞ and s2ðcjf;j; rÞ to vary rapidly with f

and c, we use the Nadaraya-Watson or local constant KR estimator to

model them. It corresponds to a local constant or zero-order polynomial,

kernel-weighted least-squares fit:

mðcjf;j; rÞ =

PNr

i = 1

Khðf" fi ;j" jiÞci

PNr

i = 1

Khðf" fi ;j" jiÞ

s2ðcjf;j; rÞ =

PNr

i = 1

Khðf" fi ;j" jiÞðmðcjfi ;ji ; rÞ " ciÞ
2

PNr

i = 1

Khðf" fi;j" jiÞ

: (10)

The appropriate adaptive kernel for regression onto the angles f and c is

again a symmetric two-dimensional von Mises kernel:
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Khðf" fi ;j" jiÞ =
1

4p2

#
I0

#
k

lfj

$$2
exp

#
k

lfj
ðcosðf" fiÞ+ cosðj" jiÞÞ

$
:

(11)

However, in this case we use a kernel that is adaptive based on the query

point rather than the data point:

lfj =

0

BBB@

& QNr

j = 1

bf
!
fj ;jj

((r
"'

1

Nr

bf ðf;jjrÞ

1

CCCA

1

2

=

#
gr

bf ðf;jjrÞ

$1
2: (12)

This estimator can adapt to the density of sample points, taking a larger

bandwidth where points are sparse. It can adapt to changes in residual vari-

ance in case of heteroscedacity, smoothing more where residual variance is

high. The estimator can adapt to the structure of the regression function,

smoothing more in flat parts of the surface and less in steeper parts. This leads

to improved smoothness, which is expected to lead to better side-chain

modeling.

Backbone-Dependent Modeling of Nonrotameric Degrees
of Freedom
The terminal dihedral angle for certain side-chain types is not well described as

a rotamer. These include the terminal degrees of freedom of Asn, Asp, Glu, and

Gln. The aromatic residues, Phe, Tyr, His, and Trp, also have more broadly

distributed c2 angles than rotameric degrees of freedom, although not to the

same extent as the amide and carboxylate groups. We model the terminal

dihedral angle of side chains with nonrotameric degrees of freedom, cn, as

continuous PDFs as a function of the backbone conformation, (f, c),

rðcnjf;j; r"nÞ, where r"n denotes the rotamer of the rotameric degrees of

freedom (c1 for Asn, Asp, and the aromatics; c1, c2 for Gln and Glu), such that:

Z

cn

r
!
c0
n

((f;j; r"n

"
dc0

n = 1: (13)

With rðcnjf;j; r"nÞ in hand on a fine grid of cn values, we can calculate

binned probabilities at any desired resolution, 5!, 10!, or 30! for instance.

Modeling rðcnjf;j; r"nÞ is effectively the regression of a PDF onto the

explanatory variables f,c; that is, we want a separate rðcnÞ for any f,c. We

have calculated Ramachandran map PDFs with data point-adaptive kernels,

while we have found that regressions were better produced using query

point-adaptive kernels. We achieve the backbone-dependent nonrotameric

cn density modeling by computing the backbone-dependent KR of the cn

densities, each of which is based on an individual cn data point taken from

the input sample:

rðcnjf;j; r"nÞ =

PNr

i = 1

Khðf;jÞðf" fi ;j" jiÞKhðci Þðcn " ciÞ

PNr

i = 1

Khðf;jÞðf" fi;j" jiÞ
; (14)

where ci are the data points of cn, and Kf;jðf" fi ;j" jiÞ is the query-adap-

tive kernel with the same expression as in Equation 11, and its k is the von

Mises concentration parameter in the (f, c) space. We take the kernels on c

to be one-dimensional von Mises functions (Equation 6) centered on ci taken

from the data sample:

Khðci Þðcn " ciÞ =
1

2pI0ðk1d=liÞ
exp

#
k1d

li
cosðcn " ciÞ

$
: (15)

The concentration parameter, k1d, sets the overall bandwidth in the cn space

and is chosen independently from its counterpart, the (f, c)-space k. li are the

scaling parameters calculated in the data-adaptive fashion in accordance with

the one-dimensional ci backbone-independent density:

li =

0

BBB@

& QNr

j = 1

bf c
!
cj jr"n

"'
1

Nr

bf cðci jr"nÞ

1

CCCA

a

=

#
g1d
r

bf cðci jr"nÞ

$a
; (16)

where bf cðcnjr"nÞ is a cn pilot density estimate and a = 1/2. The pilot density is

modeled with a non-AKDE with the same concentration parameter, k1d :

bf cðcnjr"nÞ =
1

2pI0ðk1dÞNr

XNr

j =1

exp

#
k1d cos

!
cn " cj

"$
(17)

The cn concentration parameters, k1d=li (Equation 15) are data adaptive in

order to produce a true PDF that integrates to 1. If k1d=li is query adaptive,

the resulting function would not integrate to 1 andwould notmeet the definition

of a PDF (Sain, 1994).

Note that k and k1d have different and specific values for each rotamer, r"n. It

is also worth pointing out that in very empty parts of the (f, c) map where

k=lfj/0, the KR of the cn densities defaults to the backbone-independent

density:

rðcnjf;j; r"nÞ =

PNr

i =1

Khðf;jÞðf" fi ;j" jiÞKhðci Þðcn " ciÞ

PNr

i =1

Khðf;jÞðf" fi ;j" jiÞ

=

PNr

i =1

Const,Khðci Þðcn " ciÞ

PNr

i =1

Const

=
1

Nr

XNr

i =1

Khðci Þðcn " ciÞhrcðcnjr"nÞ:

(18)

Further details on optimizing the bandwidths and converting nonrotameric

density into rotamer probabilities for the nonrotameric degrees of freedom

are given in the Supplemental Experimental Procedures.

Availability
The 2010 rotamer libraries are available from http://dunbrack.fccc.edu. The

website also presents additional images of the backbone-dependent prob-

abilities, dihedral angle means, and movies of the nonrotameric probability

densities.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, three tables, and one movie and can be found with this article

online at doi:10.1016/j.str.2011.03.019.
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Table S1, related to Figure 1. 2010 Rotamer library data and rotamer definitions

N Res type Count % # χ
angles {rotam. χ} # rotamers

(rotam. χ)
Non-rotameric χ:

interval
# rotamer

(non-rotam χ)

1 PRO 33,053 5.7 1 {χ1}† 2 – –
1A TPR 31,317 *(95) 1 {χ1}† 2 – –
1B CPR 1,736 *(5) 1 {χ1}† 2 – –
2 SER 41,237 7.1 1 {χ1} 3 – –
3 VAL 50,999 8.8 1 {χ1} 3 – –
4 THR 38,679 6.7 1 {χ1} 3 – –
5 CYS 9,086 1.6 1 {χ1} 3 – –

5A CYH 6,818 *(75) 1 {χ1} 3 – –
5B CYD 2,268 *(25) 1 {χ1} 3 – –
6 ILE 40,117 6.9 2 {χ1, χ2} 9 – –
7 LEU 64,329 11.1 2 {χ1, χ2} 9 – –
8 MET 12,240 2.1 3 {χ1, χ2, χ3} 27 – –
9 ARG 34,910 6.0 4 {χ1, χ2, χ3, χ4} 81 – –

10 LYS 37,268 6.4 4 {χ1, χ2, χ3, χ4} 81 – –
11 ASN 28,607 4.9 2 {χ1} 3 χ2: [-180°, 180°) 12
12 TRP 10,571 1.8 2 {χ1} 3 χ2: [-180°, 180°) 12
13 HIS 15,014 2.6 2 {χ1} 3 χ2: [-180°, 180°) 12
14 ASP 41,769 7.2 2 {χ1} 3 χ2: [-90°, 90°) 6
15 PHE 28,900 5.0 2 {χ1} 3 χ2: [-30°, 150°) 6
16 TYR 25,490 4.4 2 {χ1} 3 χ2: [-30°, 150°) 6
17 GLU 45,206 7.8 3 {χ1, χ2} 9 χ3: [-90°, 90°) 6
18 GLN 23,653 4.1 3 {χ1, χ2} 9 χ3: [-180°, 180°) 12

Total 581,128 100

*TPR (trans proline), CPR (cis proline) and CYH (non-disulfide-bonded Cys), CYD (disulfide-bonded Cys)
percentages are calculated relative to the total number of PRO and CYS respectively. Each rotameric degree of
freedom, χ has the rotamer definitions: g+ = [0°,120°), t = [120°,240°), g- = [240°,360°). †PRO, CPR, and TPR
have only g+ and g- rotamers.
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Table S2. Leucine rotamer counts before and after reassigning flipped χ2 values

Rotamer # before
fix

# after
fix Diff P_bef(r)

%
P_aft(r)

%
P_aft /

P_bef (%)
g+ g+ 523 523 0 0.81 0.81 100.0
g+ t 285 285 0 0.44 0.44 100.0
g+ g- 10 10 0 0.015 0.015 100.0
t g+ 19,654 19,906 +252 30.32 30.71 101.3
t t 1,711 1,459 -252 2.64 2.25 85.3
t g- 226 226 0 0.35 0.35 100.0
g- g+ 2,118 1,879 -239 3.27 2.90 88.7
g- t 39,890 40,129 +239 61.54 61.91 100.6
g- g- 403 403 0 0.62 0.62 100.0
Total 64,820 64,820 0 100.0 100.0

Leucine <t t> and <g - g+> rotamers with certain dihedral angle combinations of χ1 and χ 2 are
reassigned to the <t g+> and <g- t> rotamers, which result by rotating χ2 around by 180°. The residues
that are “fixed” are removed from the data set and only used to change the values of P(r) used in
Equation S2, where P_aft(r) is used. The populations of <t t> and <g- g+> decrease by 14.7% and
11.3% of their original populations respectively. The populations of the <t g+> and <g- t> rotamers
increase only by 1.3% and 0.6%.
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Table S3, related to Figures 4, 6, and 7. Optimal and 5%↓ κ values for rotamer probabilities, 5%↓
bandwidth radius for rotamer probabilities and regressions of rotameric χ and non-rotameric χn
densities.

Res 5%↓κ  
P(r)

5%↓-rad
P(r)

Opt-κ  
P(r)

Opt-rad
P(r)

5%↓-rad for
ρχ (χnonRot |r)

5%↓-rad
χ1 regr

5%↓-rad
χ2 regr

5%↓-rad
χ3 regr

5%↓-rad
χ4 regr

CYD 28 11° 61 7° – 11°-31°
MET 39 9° 76 7° – 9°-∞ 7°-∞ 10°-∞
ARG 40 9° 80 6° – 5°-∞ 5°-∞ 6°-∞ 6°-∞
LYS 43 9° 83 6° – 5°-∞ 6°-∞ 6°-∞ 7°-∞
ASP 45 9° 282 3° 22°-27° 6°-9° 7°-9°
CYH 46 8° 150 5° – 7°-10°
CYS 47 8° 150 5° – 7°-11°
TRP 57 8° 176 4° 6°-11° 7°-11° 7°-14°
ASN 64 7° 239 4° 14°-27° 8°-9° 10°-11°
CPR 67 7° 136 5° - 8°-12° 9°-13° 7-∞
GLN 67 7° 184 4° 11°-31° 5°-24° 5°-∞ 7°-46°
THR 85 6° 308 3° – 4°-7°
PHE 95 6° 301 3° 15°-23° 4°-10° 6°-13°
HIS 95 6° 203 4° 11°-13° 7°-12° 8°-12°
SER 102 6° 309 3° – 4°-10°
TYR 103 6° 294 3° 16°-23° 4°-10° 6°-13°
GLU 118 5° 249 4° 25°-35° 5°-28° 5°-36° 5°-36°
VAL 120 5° 576 2° – 4°-6°
ILE 122 5° 402 3° – 4°-∞ 5°-∞
LEU 125 5° 309 3° – 4°-∞ 4°-∞
PRO 139 5° 868 2° – 3°-4° 3°-4 4°-4°
TPR 142 5° 893 2° – 3°-4° 3°-4 4°-4°

“rad” indicates radius about φ,ψ or χ point encompassing 67% of density of von Mises kernel function.
Residue types are arranged according to their ascending κ values for rotamer probabilities.
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Figure S1. Criteria for identifying Leu residues that are probably incorrectly modeled in X-ray
structures.
On the left, Leu <t, t>* rotamers having χ1 + χ2 > 400° and located above the line are likely to belong to
<t, g+> rotamer. On the right, < g-, g+>* rotamers having χ1 + χ2 < 300° and below the line are likely to
belong to the <g-, t> rotamer.
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Figure S2, related to Figures 4 and 6. Optimization of adaptive kernel bandwidths for rotamer
probability and rotamer χ means.
The top row shows the optimization of the 2010 rotamer probabilities. The bottom row addresses the
2010 rotameric χ mean and standard deviation optimization. Top-left and top-middle: mean log-
likelihood of Ser rotamers vs. geometric-mean κ. Bottom-left and bottom-middle: RMSD of Asn trans χ1

dihedral angles and their query-adaptive kernel regression of the mean vs. geometric-mean κ. On
these four figures there are two sets of tick marks for the x-axis, one for the concentration parameter, κ
(at the bottom of each plot) and one for the 67% bandwidth radius in degrees, R (at the top of each
plot). The optimal κ values are indicated with a vertical dashed line with a 100% label next to it. The
5%-stepdown-from-optimum κ values are also shown. The period markers on the optimization curves
indicate iterations from the first, initial stage of the optimization algorithm tailored to find an optimal
value with a minimum number of iterations. The cross markers are iterations from the second,
refinement optimization stage. Right: scatter plot of the 5%-stepdown-from-optimum κ values vs. the
number of data points. Right-top is for rotamer probability optimization; a single point corresponds to an
individual residue type. The number of data points is the number of residues of this type in the set.
Right-bottom is for rotameric χ1 means and standard deviations; each point depicts each rotamer type
of each residue type. For example, for Arg there are 81 χ1 κ‘s on this subplot.
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Figure S3. Comparison of Asn χ2 distributions from Rosetta FastRelax decoys for the 2002 and
2010 libraries.
Density probability estimates for Asn χ2 for each χ1 rotamer (g-, trans, g+ from top to bottom) in
FastRelax decoys generated by the 2002 rotamer library (left column) and the 2010 optimized library
(left column). The 2002 libraries are implemented with a harmonic force constant at the χ2 dihedral
values with the force constants based on the standard deviations given in the library, which contains six
bins for Asn χ2. The 2010 library contains a continuous probability distribution (evaluated in 10°
intervals), and the dihedral angles are allowed to minimize freely on these potential surfaces in the
FastRelax protocol. The χ2 distributions over the 2010-library decoys for the 50-protein test set thus
resemble the backbone-independent distributions shown in Figure 1B of the main text, while the 2002-
library decoys do not.
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SUPPLEMENTARY METHODS

Dataset preparation

Step 1: List of proteins with available electron density maps. We first determined the full list of

PDB entries for which we could obtain electron densities from the Uppsala Electron Density Server

(EDS) (Kleywegt et al., 2004). We downloaded 36,125 sigmaA-weighted 2mFobs – DFcalc electron

density maps on January 15, 2010. Among them 98% (35,394) contained protein structures.

Step 2: Selecting unique chains. This list of 35,394 entries containing 85,344 chains was then

filtered down by the PISCES server (Wang and Dunbrack, 2003, 2005) to obtain a list of 4,018 protein

chains from 3,877 entries with resolution better than or equal to 1.8 Å, maximum R value of 0.22, chain

sequence length of at least 50 residues, and mutual sequence identity of the chains of 50% or less. The

remediated entries were downloaded with BioDownloader (Shapovalov et al., 2007) from the PDB

(Berman et al., 2000). To choose a threshold for the R-factor, we collected statistics on R-factor and R-

free vs resolution for all X-ray structures in the PDB. We removed obvious outliers due to reporting

errors. With the remaining data we performed a seven-order polynomial regression of R-factor and R-

free on resolution. On the plotted curves (not shown) at 1.8 Å resolution the mean R-factor and R-free

are 0.19 and 0.23 respectively. We added one standard deviation to each of these values to get R-

factor and F-free cutoffs of 0.22 and 0.27 respectively. PISCES only uses the R-factor cutoff.

Step 3: Fixing of Asn, His and Gln. We used the software program, SIOCS (Heisen and

Sheldrick, unpublished) available with SHELX (Sheldrick, 2008). SIOCS relies on hydrogen bonding

and crystal contacts to determine whether Asn, His and Gln side chains are correctly placed in crystal

structures. It leaves the correct side chains unmodified (“Kept”). SIOCS flips the terminal dihedrals by

180° of the side chains it identifies as misplaced (“Flipped”). It also provides a confidence level for

either of these two actions. It failed with a segmentation error on 32 (0.8%) of the 3,877 PDB entries,

reducing the data set to 3,845 entries with 3,985 unique chains and 936,489 residues.

Step 4: Filtering residues with defined backbone and side chain. We used only residues without

missing Cartesian coordinates. We removed the first and last residue of each chain in order to have

both backbone torsion angles (φ, ψ ) defined and any residues next to residues with missing

coordinates. We observed several bond length artifacts in the initial dataset, such as a serine having a

2.1 Å CB-OG bond. We calculated side-chain bond lengths and eliminated residues having bond

lengths longer than 2 Å. After applying these quality-control filters, the number of residues decreased

by 3% to 909,576 from 936,489.

Step 5: Applying electron density filter. We computed electron densities at the atom positions,

  
ρpoint

ratom( ) , using the methods described earlier (Shapovalov and Dunbrack, 2007), and used the

geometric mean of the atom electron densities of each residue (residue confidence level, 
 
ρpoint

residue

(Shapovalov and Dunbrack, 2007), as a quality control to remove disordered residues from further
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analysis. We individually calculated percentiles of electron density for each residue type from all the

chains in the 3,845 entries prior to the filters applied in Step 4, and used the 25th percentile value for

each residue type to remove disordered side chains. The electron density filter reduced the total

number of the residues by an additional 206,294 or 22.0% to 703,282. This filter would have eliminated

most but not all of the 3% of residues flagged by other filters in Step 4.

Step 6: Selecting Flipped and Kept Asn, His and Gln with high confidence level only. We

resolved ambiguity in the flip state of Asn and His χ2 and Gln χ 3 by leaving Kept and Flipped

conformations only with a high confidence level assigned by SIOCS. For each action SIOCS provides a

numerical confidence level and one of three labels: unsure, probable and clear. We only included Asn,

His and Gln with the clear confidence level, whether Kept or Flipped; others were discarded. 96% of

Asn, 94% of Gln, and 98% of His were clear. Among the clear conformations, 15% of Asn, 17% of Gln,

and 15% of His had Flipped states.

Step 7: Removing some Leu rotamers which are physically impossible. Some Leu <t, t> and <g-,

g+> rotamers are likely to be incorrectly modeled into the density by shifting Cγ slightly and reversing

the labels on Cδ1 and Cδ2 (Lovell et al., 2000). We identified such probable flips as those Leu rotamers

(Figure S1), denoted <t, t>*, having χ1 + χ2 > 400° (χ1 and χ2 in the range 120°-240°) and those Leu

rotamers, denoted < g-, g+>*, having χ1 + χ2 < 300° (χ1 in the range 240°-360° and χ2 in the range 0°-

120°). The <t, t>* are likely to belong to the populated <t, g+> rotamer, and the <g-, g+>* are likely to

belong to the populated <g-, t> rotamer. We excluded these unreliable Leu conformations from the
dataset, so that they were not used for rotamer probability or side-chain dihedral angle calculations.

However we adjusted the Leu backbone-independent rotamer probabilities, P(r) (used in Eq. S2) to

account for the misfit   < t,t >*→< t,g+ >  and   < g− ,g+ >*→< g− ,t >  rotamers. The values of P(r)

before and after the fix are given Table S1. A total of 14.7% and 11.3% of the original   < t,t >  and

  < g− ,g+ >  residues were moved to   < t,g+ >  and   < g− ,t >  rotamer counts respectively. Because the

latter are highly populated their populations change by only 1.3% and 0.6% respectively. These

corrections should lead to a more reliable rotamer library for Leu.
Step 8: Splitting cysteine into disulfide-bonded and non-disulfide-bonded. We identified

cysteines in disulfide bonds from the SSBOND records in the PDB files. We divided CYS into two

categories: disulfide-bonded (CYD) and not disulfide-bonded (CYH). The CYH and CYD proportions

are 75% and 25% (Table S2). In the 2002 rotamer library we had a single residue type, CYS including

both CYH and CYD. In the 2010 rotamer library, we calculate statistical results for both CYH and CYD

separately as well as all CYS.

Step 9: Distinguishing between trans- and cis- prolines. In protein structures about 5% of proline

residues are preceded by a cis peptide bond. We computed a rotamer library for prolines in three
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categories (Table S2): cis-proline or CPR (-90° < ω < 90°), trans proline or TPR (90°≤ ω ≤ 270°) and all

prolines, PRO (TPR + CPR).

Step 10: Excluding Mse, Ala and Gly. There are 16% of selenium methionine residues (Mse) in

the dataset. Having a reasonable total number of data points for the unmodified methionine (Met) we

excised the selenium methionines from our dataset. Ala and Gly do not have any degrees of freedom in

their side chains and therefore were removed from the dataset for the rotamer library calculations.

We provide rotamer libraries for 22 amino acid types: ARG, ASN, ASP, CPR, CYD, CYH, CYS,

GLN, GLU, HIS, ILE, LEU, LYS, MET, PHE, PRO, SER, THR, TPR, TRP, TYR, VAL. The total number

of unique residues in these sets is 581,128. The individual counts of residues used in the 2010 rotamer

library analysis for each of 22 residue types is reported in Table S2.

Deriving backbone-dependent rotamer probabilities from Ramachandran densities of each

rotamer using Bayes’ rule

We want to determine the rotamer probabilities, 
  
P r φ,ψ ,aa( ) , for each amino acid type, aa,

and each rotamer r, so that:

  
P r φ,ψ ,aa( )

r
∑ = 1 (S1)

for values of (φ, ψ) on a 10°x10° grid. Using Bayes’ rule, these probabilities can be derived from the

Ramachandran probability density functions of each rotamer, 
  
ρ φ,ψ r,aa( )  and the backbone-

independent frequencies of each rotamer,  
P r aa( ) :

  

P r φ,ψ ,aa( ) = ρ φ,ψ r,aa( )P r aa( )
ρ φ,ψ ′r ,aa( )P ′r aa( )

′r
∑

(S2)

The sum in the denominator of Equation S2 is over all rotamers of a given residue type.  
P r aa( )  can

be calculated easily from the observed frequencies of each rotamer in the dataset. However, to

calculate accurate and smooth estimates of 
  
P r φ,ψ ,aa( ) , we require accurate and smooth estimates

of 
  
ρ φ,ψ r,aa( ) . In order to make the subsequent formulas easier to read we drop “aa” from the

formulas. Also we denote probabilities with P and probability densities with ρ.

Kernel Density Estimates (KDE) and adaptive kernel density estimates (AKDE)
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In the simplest case, a one-dimensional distribution of some variable can be modeled from a

random data sample 
 

xi{ } , where i = 1 .. N  with a fixed-bandwidth or non-adaptive kernel density

estimator (non-adaptive KDE) (Parzen, 1962):

  
f̂h(x) = 1

N
Kh x − xi( )

i=1

N

∑ (S3)

where 
 
x − xi  is the metric distance between the estimation or query point x and the data point xi. Kh is

a symmetric, nonnegative function, centered at 0 that integrates to 1. This function is referred to as a

kernel. It meets the definition of a probability density function (PDF).

The kernel function has an important parameter, h, which acts to control the level of smoothing.

It establishes the width of the kernel: the larger h is the wider the kernel is; the smaller h is the narrower

the kernel. For instance, the Gaussian kernel with parameter h is:

  

Kh x − xi( ) = 1

2π h
exp −

x − xi( )2

2h2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(S4)

When h is held constant across all sample data points as in Equation S3, the estimator is referred to as

a fixed-bandwidth or non-adaptive kernel density estimate. Visually interpreting the formula, we can

imagine that a separate kernel curve with the same width and of the same shape is placed on top of

each sample data point. When we determine a value of the density estimator at a location, x, we sum

the heights of the kernel curve tails of all sample points at this location and then average them. There

are a number of different kernels for data on the line. Fix and Hodges (Fix and Hodges, 1951;

Silverman and Jones, 1989) first introduced this estimator with the uniform kernel, U(-1, 1). A histogram

with fixed and nonoverlapping bin widths is a particular case of the non-adaptive kernel density

estimate when a uniform distribution is selected as the kernel.

Silverman (Silverman, 1986) and Sain (Sain, 2002) pointed out that there are many situations

where the fixed-bandwidth or non-adaptive estimators do not perform well. The drawbacks of the non-

adaptive estimators are more evident when there are large differences in the density of points in

different regions of the variable space. Minnotte (Minnotte, 1992) demonstrated that the non-adaptive

estimators experience difficulty with multi-modal distributions. Sain (Sain, 2002) noted that for the

distributions with multiple modes it is difficult to find a single bandwidth that adequately differentiates

between distinct peaks and valleys between the peaks. Ramachandran distributions are inherently

multi-modal and have both highly populated and large sparsely populated or even empty regions. Sain

(Sain, 1994) also notes that in higher dimensional settings, due to the scarcity of data over much of the

effective space, a fixed bandwidth procedure is likely to fail unless the sample size is extremely large.

Cacoullos (Cacoullos, 1966) and Terrell and Scott (Terrell and Scott, 1992) showed that distributions
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with a high local curvature have significant reductions in the bias when an adaptive procedure is used.

Ramachandran densities and their resulting rotamer probabilities have such large curvature.

Breiman, Abramson, and others developed adaptive kernel density estimates (AKDE) also

referred as sample point density estimators in which the bandwidth parameter varies across the sample

data points, depending on the local density of the data (Abramson, 1982b; Breiman et al., 1977). In this

case, h can be replaced with  hi = λih , where λ i is a scaling parameter. Abramson provided the

following as an expression for λI :

  

λi =
f̂ x j( )

j=1,n
∏

⎛

⎝⎜
⎞

⎠⎟

1
N

f̂ xi( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

α

=
g

f̂ xi( )
⎛

⎝
⎜

⎞

⎠
⎟

α

(S5)

  
f̂ x( )  is any pilot estimate of the density, for instance one calculated from a non-adaptive KDE with a

reasonable value of the bandwidth. The factor g is simply the geometric mean of the pilot density

estimates at the N data points. The result is not strongly dependent on the form of the pilot estimate

(Abramson, 1982a). The power α (α ≥ 0) regulates the magnitude of how much sample points from the

sparsely populated regions have their bandwidths expanded and how much those in the populated

regions have their bandwidths shrunk relative to the “geometric mean sample point.” The special case

of α = 0 degenerates AKDE into the non-adaptive one. A value of 1/2 is commonly used (Abramson,

1982b; Silverman, 1986).

Calculating Ramachandran densities of each rotamer with 2D KDE

We apply kernel density estimates to model Ramachandran densities for each rotamer of each

residue type. Since Ramachandran probability density is defined for the backbone torsion angles φ and

ψ as two arguments, we use a two-dimensional kernel density estimate. One of the commonly used

circular probability densities is the von Mises distribution (von Mises, 1918). It is also often called the

Gaussian distribution analogue for circular data:

  
ρvonMises θ θ0 ,κ( ) = 1

2π I0 κ( ) exp κ cos θ −θ0( )( ) (S6)

where θ0 is a location of the mode of the distribution, I0(κ) is the modified Bessel function of the first

kind of order zero, and κ is the von Mises concentration parameter or an inverse measure of

dispersion. When κ >> 1, the von Mises distribution becomes very concentrated about the angle θ0 with

κ being a measure of concentration, and it approaches the traditional normal distribution with mean θ0
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and standard deviation,  σ = 1 /κ . For this reason  1 /κ  can be regarded as a bandwidth, h. As with

the normal distribution, approximately 67% of the density is contained within   h ≡ 1 /κ  radians from

the mean value of a von Mises distribution.

The non-adaptive or fixed-bandwidth KDE in two dimensions for Ramachandran data can be

written as the sum over products of φ- and ψ- von Mises kernels for Nr data points of rotamer type, r:

  

ρ̂(φ,ψ r) = 1
Nr

Kh φ − φi( )Kh ψ −ψ i( )
i=1

Nr

∑

= 1
4π 2Nr

1

I0 κ( )( )2 exp κ cos φ − φi( ) + cos ψ −ψ i( )( )( )
i=1

Nr

∑
(S7)

In this case  1 /κ  defines a radius of the two-dimensional hump covering 67% of the kernel density.

For simplicity of further formulas we do not place a cap on top of kernel density or kernel regression

estimates whether it is density,  ρ̂  or probability,   P̂  or χ mean,  µ̂(χ)  or χ variance,  σ̂
2 (χ) . These

estimates can be easily identified by the sum expressions of kernels or products of a kernel and some

object. The only exception where we still preserve the cap is a pilot estimate, 
   
f̂ i( ) .

Data-adaptive KDE for Ramachandran density modeling

Rewriting Equation S7, we generate the data-adaptive kernel density estimate (AKDE) of the

Ramachandran density of a rotamer, r:

  

ρ(φ,ψ | r) = 1
4π 2Nr

1

I0 κ λi( )( )2 exp
κ
λi

cos φ − φi( ) + cos ψ −ψ i( )( )⎛

⎝⎜
⎞

⎠⎟i=1

Nr

∑ (S8)

where 
  
λi = λ φi ,ψ i( )  scales the width of the von Mises kernels. Large values of λi produce wide kernels

and small values produce narrow kernels. For the Ramachandran densities for the rotamer library, we

can make the scaling parameter,  λi , data-adaptive in the following two ways

1) Separately adaptive within each rotamer, r:

  

λi =

f̂ φ j ,ψ j | r( )
j=1

Nr

∏
⎛

⎝
⎜

⎞

⎠
⎟

1
Nr

f̂ φi ,ψ i | r( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

α

=
gr

f̂ φi ,ψ i | r( )
⎛

⎝
⎜

⎞

⎠
⎟

α

(S9)

2) Adaptive within all conformations of each residue type:
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λi =
f̂ φ j ,ψ j( )

j=1

N

∏
⎛

⎝⎜
⎞

⎠⎟

1
N

f̂ φi ,ψ i( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

α

=
g

f̂ φi ,ψ i( )
⎛

⎝
⎜

⎞

⎠
⎟

α
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where Nr is a total number of conformations per residue type, 
  
f̂ φ,ψ | r( )  and 

  
f̂ φ,ψ( )  are respectively

the pilot estimates of the Ramachandran density for a rotamer r and for a residue type as a whole. gr

and g are the geometric means of the corresponding densities. For the pilot estimate at the point

  
φi ,ψ i( ) ,  we use the non-adaptive kernel density estimate with the same value of κ using Equation S7.

We first used Eq. S9 with several different values of α to produce the scaling parameters for

each rotamer. However, we found that this produced undesirable results, particularly for rare rotamers.

For instance, we might have two groups of points of one rotamer type in proximity to each other in

(φ, ψ)-space with one additional point of a rare rotamer type in their midst. Since Eq. S9 produces

different kernel widths for the different rotamers, the data points for the common rotamer will have

relatively narrow kernels due to the higher density of these data points, while the rare rotamer will have

a very wide kernel due to its low density in that region. Some distance away from these two clusters of

points, the values of the kernels for the popular rotamer have dropped orders of magnitude, while the

kernel of the rare rotamer may still have a non-negligible value. The inversion of the rotamer probability

density estimates using Bayes rule (Eq. S2) will produce high probabilities for these rare rotamers in

sparsely populated parts of the map. Using a rotamer-independent scaling of κ with Equation S10

avoids this problem by making the scaling parameter dependent only on 
  
φi ,ψ i( ) . In general, we found

a value of α=1/2 produced reasonable results.

Treatment of rare rotamers

Some very rare rotamers for longer side chains such as Arg and Lys and even for shorter side

chains like Leu have only a few examples in the data set, sometimes less than 10 examples (Leu < g+,

g- > has 10 data points, Figure 2), and it is therefore quite difficult to estimate their Ramachandran

densities with any accuracy. Some of the rarest ones are likely very high in energy and may be misfit to

the density. In any case, we want to prevent them from having significant probability in any part of the

(φ, ψ) space. We therefore implemented a “rare rotamer fix” by which if there were fewer than 25 data

points for a rotamer, we estimated the Ramachandran PDF with the data having one less degree of

freedom, starting from the last χ angle of the side chain. For example, if a Lys or Arg rotamer has less

than 25 instances, we use the following equation to express the numerator of Equation S2:
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P r φ,ψ ,aa( )∝ ρ φ,ψ r1,r2 ,r3,aa( )P r1,r2 ,r3,r4 aa( ) (S11)

where 
  
r = r1,r2 ,r3,r4{ }  and ri is the rotamer for the χi degree of freedom. The denominator of Equation

S2 must also be altered so that when r' represents a rotamer treated in this way, the term in the sum is

also calculated using Equation S11. If there are not enough data points in 
  

r1,r2 ,r3{ }  then 
  
ρ φ,ψ r1,r2( )

can be used, etc.

Maximum-likelihood cross validation for κ parameter

The extent of smoothing is determined by the concentration parameter, κ in Eq. S8 used to

determine 
  
ρ φ,ψ r( ) . Oversmoothed PDFs may lose important details in the variation of rotamer

probabilities, while undersmoothed PDFs may produce results that are too bumpy. We calculate one

value of κ for each residue type by maximizing the likelihood of the data points using cross validation.

Since we are trying to determine the best κ to determine the rotamer probabilities, 
  
P r φ,ψ( ) , we chose

to maximize the likelihood function of these probabilities, rather than the Ramachandran probability

densities, 
 
ρ φ,ψ( )  or 

  
ρ φ,ψ r( ) . That is, we used the likelihood function, 

   
L κ( ) = P ri |φi ,ψ i( )

i=1

N

∏ (S12)

(here ri means the rotamer of the i-th side chain). In practice, we use a ten-fold cross validation of the

log likelihood:

   
κOptim = argmax

κ
L* κ( ) = argmax

κ
log P ri |φi ,ψ i( )( )

i=1

N

∑ (S13)

Adaptive kernel regression (KR) for the rotameric χ angles and variances

The second major component of the rotamer library is the backbone-dependent population

means, µ and standard deviations, σ of the available side-chain dihedral angles (χ1, χ2, χ3 and χ4) for

each rotamer of the 22 residue types (Table S1). In contrast to the previous versions of the rotamer

library, our goal is to model the χ means and their variances as smoothly varying functions and to

achieve a good trade-off between the amount of smoothing and the accuracy of finer details in the fit to

the experimental data.

For the side chains, i = 1..Nr, of the residue type aa and rotamer r, we model the regression

relation between the response variable, χ (which can be χ1, χ2, χ3, or χ4), and the explanatory variables

(φ, ψ) (Härdle et al., 2004):
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χ i = m(φi ,ψ i | r) + ν

1
2 φi ,ψ i( )ε i (S14)

where   m(φi ,ψ i | r)  is the unknown regression function, 
  
ν φi ,ψ i( )  is the variance, and εi are random

observation errors normally distributed with a mean of zero and variance 1. Given that side chains in

backbone-constrained conformations experience greater uncertainty in their χ angles, we assume the

standard deviation of the observation errors vary as a function of φ and ψ ; that is, the model is

heteroscedastic. In this case the regression function is the conditional expectation or population mean

of χ given the backbone conformation:

  
m x, y | r( ) = E χ |φ = x,ψ = y,r( ) = µ(χ |φ = x,ψ = y,r) (S15)

  
v x, y | r( ) = Var χ |φ = x,ψ = y,r( ) = σ 2 χ |φ = x,ψ = y,r( ) (S16)

Since we do not expect   µ(χ |φ,ψ ,r)  and 
  
σ 2 χ |φ,ψ ,r( )  to vary rapidly with φ  and ψ, we use the

Nadaraya-Watson or local constant kernel regression (KR) estimator to model them. The Nadaraya-

Watson estimator can be seen as a special case of a larger class of KR estimators. It corresponds to a

local constant or zero-order polynomial, kernel-weighted least squares fit:

  

µ χ |φ,ψ ,r( ) =
Kh φ − φi ,ψ −ψ i( )χ i

i=1

Nr

∑

Kh φ − φi ,ψ −ψ i( )
i=1

Nr

∑

σ 2 χ |φ,ψ ,r( ) =
Kh φ − φi ,ψ −ψ i( ) µ χ |φi ,ψ i ,r( ) − χ i( )2

i=1

Nr

∑

Kh φ − φi ,ψ −ψ i( )
i=1

Nr

∑

(S17)

Rewriting Equation S17:

  

µ χ |φ,ψ ,r( ) = 1
Nr

Kh φ − φi ,ψ −ψ i( )
1

Nr

Kh φ − φi ,ψ −ψ i( )
i=1

Nr

∑

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

χ i
i=1

Nr

∑ = 1
Nr

Wi (φ,ψ )χ i
i=1

Nr

∑ = Wi
*(φ,ψ )χ i

i=1

Nr

∑

  

σ 2 χ |φ,ψ ,r( ) = 1
Nr

Kh φ − φi ,ψ −ψ i( )
1

Nr

Kh φ − φi ,ψ −ψ i( )
i=1

Nr

∑

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

µ χ |φi ,ψ i ,r( ) − χ i( )2

i=1

Nr

∑

= Wi
*(φ,ψ ) µ χ |φi ,ψ i ,r( ) − χ i( )2

i=1

Nr

∑
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Wi

*(φ,ψ ) = 1
Nr

Wi (φ,ψ )
i=1

Nr

∑
i=1

Nr

∑ = 1 (S18)

reveals that the Nadaraya-Watson estimator can be seen as a weighted, local average of the response

variables. 
  
σ 2 φ,ψ | r( )  is an estimate of the data variance as a function of φ and ψ which is what we

want to be a part of the rotamer library, not the uncertainty in   µ(χ |φ,ψ ,r)  per se. The appropriate

kernel for regression onto the angles φ and ψ is again a symmetric two-dimensional von Mises kernel:

  

Kh φ − φi ,ψ −ψ i( ) = 1

4π 2 I0 κ( )( )2 exp κ cos φ − φi( ) + cos ψ −ψ i( )( )( ) (S19)

The non-adaptive KR estimate (Eq. S17 and S19) encounters problems similar to those of non-

adaptive kernel density estimate described above. Using a locally adaptive instead of a fixed bandwidth

may be advantageous for several reasons (Brockmann et al., 1993). The estimator can adapt to the

density of sample points, taking a larger bandwidth where points are sparse. It can adapt to changes in

residual variance in case of heteroscedacity, smoothing more where residual variance is high. The

estimator can adapt to the structure of the regression function, smoothing more in flat parts of the

surface and less in steeper parts. This leads to improved smoothness that is one of our goals of better

side-chain modeling.

For the KR we compared two ways of adapting the local bandwidth by replacing κ with κ λ  in

Eq. S19. The first is data-adaptive or also called sample-point adaptive as in Equation S9 or S10:

  

λi =

f̂ φ j ,ψ j | r( )
j=1

Nr

∏
⎛

⎝
⎜

⎞

⎠
⎟

1
Nr

f̂ φi ,ψ i | r( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

α

=
gr

f̂ φi ,ψ i | r( )
⎛

⎝
⎜

⎞

⎠
⎟

α

(S20)

Unfortunately, the data-adaptive scaling leads to highly unreliable results in sparsely populated (φ, ψ)

areas. It creates an effect such that even one or two points in an otherwise unpopulated region can

determine the values of KR in a large area.

The second way is the query-point adaptive kernel regression, also called a balloon estimator

(Breiman et al., 1977; Sain, 2002). In our case,

  
λ(φ,ψ ) =

gr

f̂ φ,ψ | r( )
⎛

⎝
⎜

⎞

⎠
⎟

α

≡ λφ ,ψ (S21)

The major difference here is that the bandwidths of each kernel are adapted relative to the density at

the query or estimation point, (φ, ψ) rather than the densities at the sample points. The balloon
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estimator is a locally fixed-bandwidth estimator with different bandwidth values for different query

points. In trial calculations, the query-adaptive approach with α=1/2 proved to be better suited for our

regression problem.

Bandwidth estimation for kernel regression

We found two drawbacks in directly applying the query-adaptive scaling to the kernel regression

(Equation S21). First, even for common rotamers, a few points in a sparse region might cause rather

sharp changes in the mean dihedral angles. Second, and more problematic, rare rotamers might have

high relative densities due to a very small number of points, and we wish to determine the mean from

these points. For instance, a rotamer having only 25 examples might have 20 points in the α-helical

region and 5 points in the β-sheet region. A mean from these 5 points would be very unreliable. We

therefore developed the following modification to the query-point adaptive KR scaling parameters,  
λφ ,ψ

of Equation S21. We want kernel functions such that at least 25 points are contained within one

bandwidth radius of the query point, that is within a circle enclosing 67% of the kernel density. Starting

from the query point, we count the number of query points within the radius of the kernel calculated

from Eq. S21. If this number is greater than or equal to 25, then we use Eq. S21. If not, we increase λ

until the circle (or bin) about the query point includes exactly 25 data points.

  

λφ ,ψ
Bin =

λφ ,ψ if δ φi −φ( )2
+ ψ i −ψ( )2

≤ R
κ
λφ ,ψ

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

Nr

∑ ≥ 25

λφ ,ψ
* : δ φi −φ( )2

+ ψ i −ψ( )2
≤ R

κ
λφ ,ψ

*

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

Nr

∑ = 25 otherwise

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

(S22)

  

Kh(φ ,ψ ) φ − φi ,ψ −ψ i( ) = 1

4π 2 I0 κ λφ ,ψ
Bin( )( )2 exp

κ
λφ ,ψ

Bin cos φ − φi( ) + cos ψ −ψ i( )( )⎛

⎝
⎜

⎞

⎠
⎟ (S23)

where 
  
R x( ) = 1 x  is the bandwidth radius of the 2D von Mises distribution with concentration

parameter x that contains 67% of the density. The δ-function is 1 if its argument is true, and 0

otherwise. While the conditional equation may seem complicated, it has a simple interpretation. 
 
λφ ,ψ

*  is

the value of λ required to enclose 25 data points, given κ. The query-point adaptive scheme in Equation

S22, 
  
λφ ,ψ

Bin , guarantees that at each query point, the local χ regression is based on at least 25 sample

points with non-negligible values of the kernel function. These values will dominate the kernel

regression value, although points further away will also contribute. This modification of the query-

adaptive kernel regression leads to a more statistically significant estimates of µχ and σχ, and therefore
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underlying variation in   µ(χ |φ,ψ ,r)  surface. The threshold of 25 data points was chosen as a trade-off

between increasing statistical significance and decreasing backbone-dependent information of these

estimates. In very sparsely populated regions of the (φ, ψ ) space, 
  
κ λφ ,ψ

Bin → 0 , the estimates will

approach the backbone-independent means and variances:

  

µ χ |φ,ψ ,r( ) =
Kh(φ ,ψ ) φ − φi ,ψ −ψ i( )

i=1

Nr

∑

Kh(φ ,ψ ) φ − φi ,ψ −ψ i( )
i=1

Nr

∑
=

Const
i=1

Nr

∑ ⋅ χ i

Const
i=1

Nr

∑
= 1

Nr

χ i
i=1

Nr

∑ = χ (r )

σ 2 χ |φ,ψ ,r( ) =
Const ⋅ µ χ |φi ,ψ i ,r( ) − χ i( )2

i=1

Nr

∑

Const
i=1

Nr

∑
= 1

Nr

χ i − χ (r )( )2

i=1

Nr

∑ = σχ (r )( )2

(S24)

For each of 22 residue types, aa, of each rotamer type r and for each rotameric χ, the von Mises

concentration parameter, κ , sets the level of details in the regression model (Eq. S22, S23 and S17)

as in the case of the rotamer probabilities. We individually optimize each concentration parameter,

 
κOptim  by the method of ten-fold least-squares cross validation. The objective function is the sum of the

squared residuals of the sample:

  
κOptim = arg min

κ
SR(κ ) = argmin

κ
µ χ |φi ,ψ i ,r( ) − χ i( )2

i=1

Nr

∑ (S25)

That is, for each κ, 90% of the data are used to calculate the terms of the remaining 10% in Eq. S25,

and this procedure is repeated 10 times, leaving out a different 10% each time. Once  
κOptim  is found

that minimizes the objective function, this value is used in Eq. S22 , S23  and S17 to resolve

  
µ χ |φ,ψ ,r( )  and 

  
σ 2 χ |φ,ψ ,r( )  for the complete input data sample. In Results we report standard

deviations of χ instead of the squared residuals as in Eq. S25 in order to be able to compare and

interpret optimal standard deviations for different rotamers and different residue types.

Backbone-dependent modeling of non-rotameric degrees of freedom

The terminal dihedral angle for certain side chain types is not well described as a rotamer.

These include the terminal degrees of freedom of Asn, Asp, Glu, and Gln. The aromatic residues, Phe,

Tyr, His, and Trp, also have more broadly distributed χ2 angles than rotameric degrees of freedom,

although not to the same extent as the amide and carboxylate groups. We propose to model the

terminal dihedral angle of side chains with non-rotameric degrees of freedom,  χn , as continuous
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probability density functions as a function of the backbone conformation, (φ, ψ), 
  
ρ χn φ,ψ ,r−n( ) , where r-

n denotes the rotamer of the rotameric degrees of freedom (χ1 for Asn, Asp, and the aromatics; χ1, χ2

for Gln and Glu), such that:

  
ρ ′χn |φ,ψ ,r−n( )d ′χn = 1

χn

∫ (S26)

With 
  
ρ χn |φ,ψ ,r−n( )  in hand on a fine grid of  χn  values, we can calculate binned probabilities at any

desired resolution, 5°, 10°, or 30° for instance.

Modeling 
  
ρ χn |φ,ψ ,r−n( )  is effectively the regression of a probability density function (PDF)

onto the explanatory variables φ,ψ; that is, we want a separate  
ρ χn( )  for every φ, ψ on a 10°x10° grid

(or any grid spacing). We have calculated Ramachandran map PDFs with data-point adaptive kernels,

while we have found that regressions were better produced using query-point adaptive kernels. We

achieve the backbone-dependent non-rotameric  χn  density modeling by computing the backbone-

dependent KR of the  χn  densities, each of which is based on an individual  χn  data point taken from

the input sample:

  

ρ χn φ,ψ ,r−n( ) =
Kh(φ ,ψ ) φ − φi ,ψ −ψ i( )Kh χi( ) χn − χ i( )

i=1

Nr

∑

Kh(φ ,ψ ) φ − φi ,ψ −ψ i( )
i=1

Nr

∑
(S27)

where χi are the data points of χn and 
  
Kφ ,ψ φ − φi ,ψ −ψ i( )  is the query-adaptive kernel with the same

expression as in Eq. S23 and its κ is the von Mises concentration parameter in the (φ , ψ) space. We

take the kernels on χ to be one-dimensional von Mises functions (Eq. S6) centered on  χ i  taken from

the data sample:

  
Kh χi( ) χn − χ i( ) = 1

2π I0 κ1d λi( ) exp
κ1d

λi

cos(χn − χ i )
⎛

⎝⎜
⎞

⎠⎟
(S28)

The concentration parameter,   κ1d  sets the overall bandwidth in the  χn  space and is chosen

independently from its counterpart, the (φ , ψ)-space κ.  λi  are the scaling parameters calculated in the

data-adaptive fashion in accordance with the one-dimensional  χ i  backbone-independent density:
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λi =

f̂χ χ j r−n( )
j=1

Nr

∏
⎛

⎝
⎜

⎞

⎠
⎟

1
Nr

f̂χ χ i r−n( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

α

=
gr

1d

f̂χ χ i r−n( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

α

(S29)

where 
  
f̂χ χn | r−n( )  is a  χn  pilot density estimate and α=1/2. The pilot density is modeled with a non-

adaptive KDE with the same concentration parameter,  κ1D :

  
f̂χ χn | r−n( ) = 1

2π I0 κ1d( )Nr

exp κ1d cos χn − χ j( )( )
j=1

Nr

∑ (S30)

The  χn  concentration parameters,   κ1d λi  (Eq. 28) are data-adaptive in order to produce a true PDF

that integrates to 1. If they were forced to be  χn  query-adaptive, i.e.   κ1D λi , the resulting function

would not integrated to 1 and would not meet the definition of a PDF (Sain, 1994).

Note that κ and   κ1d  have different and specific values for each rotamer, r-n. It is also worth

pointing out that in very empty parts of the (φ, ψ) map where  
κ λφψ → 0 , the KR of the  χn  densities

defaults to the backbone-independent density:

  

ρ χn φ,ψ ,r−n( ) =
Kh(φ ,ψ ) φ − φi ,ψ −ψ i( )K

h χi( ) χn − χ i( )
i=1

Nr

∑

Kh(φ ,ψ ) φ − φi ,ψ −ψ i( )
i=1

Nr

∑

=
Const ⋅ K

h χi( ) χn − χ i( )
i=1

Nr

∑

Const
i=1

Nr

∑
= 1

Nr

K
h χi( ) χn − χ i( ) ≡ ρχ χn r−n( )

i=1

Nr

∑

(S31)

Cross-validated optimization for non-rotameric κ and  κ1D

In the equations for the backbone-dependent KR of the non-rotameric  χn  density (Eq. S27,

S23, 28, S29 and S30) there are two von Mises concentration parameters, κ and   κ1d  regulating the

soundness and smoothness of 
  
ρ χn |φ,ψ ,r−n( ) . Both of these parameters need to be optimized by

cross validation. In the best scenario they should be optimized together in the mutual 2D space,
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  κ ×κ1d . However, the overhead of the KR of densities is more computationally expensive than the KR

of a single response variable. In order to produce accurate probability estimates over various intervals

by integrating the  χn  density, we calculated it every 1° in a 360º range. This produces a 360-element

response vector instead of a single-element response variable. Despite different optimizations in the

source code, it takes 12~24 hours to perform cross-validated kernel regression for one residue type

with  χn in contrast to 0.5~2 hours for the rotameric residue type. Fortunately, according to our trials

there is no strong interconnection between these two in terms of influence on the objective function

score. We believe it is a good approximation to separately optimize them, at first   κ1d  and then κ.

We maximize the 10-fold cross-validated likelihood of the backbone-independent  χ
nonRot  and

find   κ1d  for each rotamer, r-n:

   

κ1D
Optim = argmax

κ1D

L* κ1D( ) = argmax
κ1D

logρ χ i r−n( )
i=1

Nr

∑

ρ χn r−n( ) = 1
2πNr

1
I0 κ1D λi( ) exp

κ1D

λi

cos χn − χ i( )⎛

⎝⎜
⎞

⎠⎟i=1

Nr

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

(S32)

Once   κ1D
Optim  is determined, we keep it fixed in the 10-fold maximization of the log-likelihood of the

backbone-dependent non-rotameric  χn  and find  
κOptim  for each rotamer, r-n:

   
κOptim = argmax

κ
L* κ( ) = argmax

κ
log ρ χ i |φi ,ψ i ,r−n( )( )

i=1

Nr

∑ (S33)

Optimization of kernel bandwidths in new 2010 rotamer library: rotamer probabilities, rotameric

χ means and variances and non-rotameric χ densities

For the problems of rotamer probabilities, KR of rotameric means and KR of non-rotameric

densities, we maximize a score function, S(κ):

  
κOptim = argmax

κ
S κ( ) (S34)

We do not assume S(κ) to be unimodal. We search for the global maximum in a wide κ range. Since

we apply a 10-fold cross validation and S(κ) itself involves a lot of computation, we require an

optimization method with a minimal number of iterations and evaluations of S(κ). We used the following

method to find the optimal κ.

We first cover a vast κ-interval, 
  
κ scale ⋅ 0,212⎡⎣ ⎤⎦ =κ scale ⋅ 0,4096⎡⎣ ⎤⎦  with 16 unevenly arranged κi at
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κ Initial = 0,
1

215 ,
1

210 ,
1
28 ,

1
25 ,

1
23 ,

1
2

,1,2,23,25,28,3 ⋅27 ,29 ,210 ,212⎧
⎨
⎩

⎫
⎬
⎭
⋅κ scale

= 0,
1

32768
,

1
1024

,
1

256
,

1
32

,
1
8

,
1
2

,1,2,8,32,256,384,512,1024,4096
⎧
⎨
⎩

⎫
⎬
⎭
⋅κ scale

(S35)

where  κ scale  is an estimate of the scale of the κ-interval where we expect to locate the maximum.

For the rotamer probability problem we calculate  
κOptim  for each residue type. The number of

data points has the same order of  (10 ~ 100) ⋅103  per residue type (Table S2). The κ-interval of

 
0,4096⎡⎣ ⎤⎦  corresponds to the bandwidth radius interval of 

 
1°,∞°⎡⎣ ) . A bandwidth corresponds to an

averaging window. We choose the same   κ scale = 1 for each residue type.

For the KR problems where we determine  
κOptim  for each rotamer and for each degree of

freedom, χn of a residue type, aa. We have varying amounts of sample data, 0~10,000. For that reason

we set  κ scale  in a relation to the number of data points per rotamer, r:

  

κ scale =
1

max
i

Ni( ) Ni( )d (S36)

where d is 1/3 for a two-dimensional von Mises kernels and 2/5 for one-dimensional von Mises kernels

(Taylor, 2008). The regression of rotameric means and non-rotamer density as a function of φ and ψ is

a two-dimensional problem, while KDE of the backbone-independent non-rotameric  χn  density for each

r-n is a one-dimensional problem.

We compute S(κi) at each of 16 values of  κ Initial (Figure S2). We find κm with a maximum value,

S(κm). Then we locate a refinement interval of 
  
κ m−1,κ m+1( )  and perform a second, refinement stage of

optimization. For this purpose we utilize an algorithm which is based on golden section search and

parabolic interpolation by calling a function, fminbnd from Matlab package. To decrease the number of

iterations and score function calls, we set a relative error of 5% for  
κOptim  to stop the optimization, so

that the termination tolerance on  
κOptim  is 

  
0.05 ⋅ κ m−1 +κ m+1( ) / 2 . The refinement requires about 5-10

score function evaluations to determine  
κOptim  with the specified accuracy. It totals to ~25 iterations for

the whole two-stage optimization.

We plotted the optimization curves (Figure S2) and found that S(κ) is a unimodal function with a

very broad location of  
κOptim . In all cases we succeeded in locating  

κOptim  within the 
  
κ scale ⋅ 0,4096⎡⎣ ⎤⎦
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interval. We noticed that for many residue types and/or rotamers the curve rose rapidly from κ  = 0 to κ =

50 to 100 and then rose very slowly at higher values of κ, sometimes reaching a maximum at very high

values of κ, in the range of 500-1000. At κ = 33, the circle that encloses 67% of the von Mises density

has a radius of 10º. The radius is 5º at κ = 131, 2.5° at κ=525, and 1.5° at κ=1459. Since smoothness

is a desired quality in the new rotamer library, we wanted to favor lower values of κ, as long as we

would not sacrifice much in the likelihood or squared residuals and the SCWRL4 prediction rates

improve, remain the same or have negligible reduction.

To avoid large κ values for little improvement in the score function of the held-out data, we

tolerate a certain percentage decrease of the score range away from its maximum value. We define the

range as

  
ΔS = S(κOptim ) − S(0) (S37)

We can achieve smoother functions at the cost of a small decrease in S by choosing κ↓  such that

  
S κOptim( ) − S κ↓( ) = pΔS (S38)

where p is some small percentage. We conclude that the 5% stepdown (p = 0.05) for the rotamer

probability and regression problems produces the best results in SCWRL4 tests (Table 1 and 2 of main

text), the 5% stepdown (p = 0.05) is the best for Rosetta RMSD tests with ClassicRelax (Table 2), and

the optimal κ values are best for the Rosetta RMSD tests with FastRelax as well as for the Rosetta

side-chain conformations with both protocols. The optimal  
κOptim  and 5%-stepdown κ↓  for each of

these rotamer library problems can be found in Table S3. The scatter plots of κ↓  vs. the number of data

points per residue, Nres or rotamer Nr are shown in Figure S2 in the right panel. It is interesting to note

that with a good precision   κ↓(N )  follow the least mean integrated squared error asymptotic (Eq. S36)

for both the one-dimensional (not shown) and two-dimensional problems.

Converting 2010 non-rotameric χ density model to “rotamer” model

We can split the non-rotameric  χn  interval (Table S2) into “rotamers” for each rotamer, r-n. Then

we locate the main mode,   
χn  of the backbone-independent  

ρ χn r−n( )  from Eq. S32. We place the first

30°  χn  bin centered on   
χn . Then every 30° we add the remaining non-overlapping bins of the same

width starting from the first bin and moving rightward. These bins designate the borders on the non-

rotameric “rotamers”, 
  
θ j

1,θ j
2⎡⎣ )  where   j = 1..J  and J is the number of such bins.
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Once the backbone-independent definitions of  χn  “rotamers” are established, we can calculate

their backbone-dependent probabilities, means and standard deviations from the backbone-dependent

 χn  probability density estimates (Eq. S27) by integrating over the above non-overlapping bins:

  

P rj φ,ψ ,r−n( ) = P θ j
1 ≤ χn ≤θ j

2 φ,ψ ,r−n( ) = ρ χn
′ φ,ψ ,r−n( )dχn

′
θ j

1

θ j
2

∫

µ χn |φ,ψ ,r−n ,rj( ) = χn
′ρ χn

′ φ,ψ ,r−n( )dχn
′

θ j
1

θ j
2

∫

σ 2 χn |φ,ψ ,r−n ,rj( ) = µ χn |φ,ψ ,r−n ,rj( ) − χn
′⎡

⎣⎢
⎤
⎦⎥

2

⋅ ρ χn
′ φ,ψ ,r−n( )dχn

′
θ j

1

θ j
2

∫

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

(S39)

The r-n-conditional individual probabilities for  
rj  sum to 1.0 for each r-n, 

  
P(rj |φ,ψ ,r−n )

1

J

∑ = 1. In the

rotamer library, we report the joint probability of these 30° bins and the probability of rotamer r-n, i.e.,

the probability of the conformation of the entire side chain. We accomplish this by:

  P(< r−n ,rn >|φ,ψ ) = P(rn |φ,ψ ,r−n )P(r−n |φ,ψ ) (S40)

In Eq. S39 we used the backbone-independent  χn  “rotamer” definitions for the discrete model.

While it may be helpful in some rotamer-library applications, such as Rosetta, other programs including

SCWRL4 may benefit from the backbone-dependent  χn  “rotamer” definitions. Such definitions

guarantee an exact centering of the first non-rotameric “rotamer”,   χ
0 (φ,ψ | r−n )  on the main mode of

  
ρχ χn φ,ψ ,r

−n( )  density. It may lead to higher accuracy of side-chain modeling:

  

θ1
1(φ,ψ | r−n ),θ1

2 (φ,ψ | r−n )⎡⎣ ) = χ 0 (φ,ψ | r−n ) −15°,χ 0 (φ,ψ | r−n ) +15°⎡⎣ )
θ2

1(φ,ψ | r−n ),θ2
2 (φ,ψ | r−n )⎡⎣ ) = χ 0 (φ,ψ | r−n ) −15° + 30°,χ 0 (φ,ψ | r−n ) +15° + 30°⎡⎣ )

...

(S41)

We provide both types of the discrete rotamer libraries based on the backbone-independent and

backbone-dependent  χn  “rotamer” definitions.

SCWRL4 and Rosetta calculations

To reduce bias in SCWRL4 benchmarking we specifically built a new set of rotamer libraries

based on a smaller set of chains than in the original dataset. From the 4,018 chains we removed chains

having sequence identity more than 50% with any of the 379 chains in the previously published

SCWRL4 testing set (Krivov et al., 2009). The 4,018 chain list shrank by 366 producing a list of 3,652
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proteins. We found it impractical to recalculate the older 2002 rotamer library using Bayesian statistical

methods based on a smaller than its original high-resolution 850 chain list available in 2002. Therefore

in our benchmarking results the 2002 rotamer library may have some bias toward higher prediction

rates then it genuinely has, diminishing the difference between the 2002 and 2010 libraries.

SCWRL4 was run in its default flexible-rotamer-model mode (FRM) and crystal symmetry was

enabled. In this mode, residues in the asymmetric unit of the crystal may have contacts with side chains

in crystal neighbors, and these interactions are added as edges in the interaction graph. Thus, a bona

fide prediction of the side-chain conformations in the crystal is performed.

SCWRL4 was run without the residue-specific parameters described by Krivov et al. (2009). In

that work, three parameters were optimized for each residue type: the constant before the rotamer log

probability term in the scoring function, the temperature in the flexible rotamer model free energy

calculation, and a scaling factor in front of the standard deviations for sampling subrotamers. For the

calculations in this paper on many different rotamer libraries, we set these values to 3.0, 2.0, and 1.0

respectively for all residue types.

The results reported in Table 1 are for side chains in the test set with electron density in the top

75th percentile, i.e., discarding potentially disordered side chains in the accuracy evaluation, although

the predictions were performed on all residues. The proteins in the test set were analyzed with the

program SIOCS (Heisen and Sheldrick, unpublished), which flips Asn, His and Gln residues if better

hydrogen bonding can be formed. The results in Table 1 compare the actual value predicted by

SCWRL4 with the SIOCS-processed X-ray structures.

Table 1 reports the average absolute accuracy. For a side-chain type such as Lys, this is an

average of percent χ1, percent χ1+2, percent χ1+2+3, and percent χ1+2+3+4 correct:

  
PCLys = 100

N1 + N12 + N123 + N1234

4N Lys

(S42)

where N12 for instance is the number of lysine side chains with both χ1 and χ2 correct within 40°. This

value gives added weight to the more reliably determined degrees of freedom closer to the backbone.

To obtain an accuracy across all side-chain types, we weight PC for each amino acid type by its

frequency:

 

PC =
N Res PCRes

Res
∑

N Res
Res
∑

(S43)

The Rosetta calculations were performed with Rosetta3.1 {Leaver-Fay, 2011 #7968} with the

2002 library and six 2010 libraries (optimized, 2%, 5%, 10%, 20% and 25% stepdown) and one

developmental library version (2009it10, distributed with Rosetta3.1) as modified by Song et al. (2011).

ClassicRelax was run with 25 Stage 1 outer cycles and 25 Stage 1 inner cycles. FastRelax was run
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with its default settings. Using the maximum-likelihood superposition software program, Theseus

(Theobald and Wuttke, 2006), each of the 100 resulting decoys was translated and rotated closest to

the idealized structure. The maximum-likelihood backbone and full-atom RMSD and χ prediction

accuracy between each decoy and original idealized structure were calculated and averaged for each

rotamer library. The average RMSD over the 50 proteins was calculated for each library, and then the

difference in percent was calculated from the average for the 2002 library. For side-chain accuracy, we

did not optimize the flip state of Asn, Gln, and His for the 50-protein benchmark. Side-chain accuracies

are therefore reported with Asn and His χ2 correct if either χ2 or χ2+180° was within 40° of the X-ray

structure. The same holds for Gln χ3. To compare side-chain results of SCWRL4 with those of Rosetta,

we also calculated SCWRL4 accuracies treating these residues as symmetric about their terminal

dihedral angles and for all side chains regardless of electron density values.
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