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Abstract 

We present a Bayesian statistical analysis of the conformations of side  chains in proteins from the Protein Data Bank. This 
is an extension of the backbone-dependent rotamer library, and includes rotamer populations and average ,y angles for 
a full range of 4,+ values. The Bayesian analysis used here provides a rigorous statistical method for taking account of 
varying amounts of data. Bayesian statistics requires the assumption of aprior distribution for parameters over their range 
of possible values. This prior distribution can be derived from previous data or from pooling some of the present data. 
The prior distribution is combined with the data to form the posterior distribution, which is a compromise between the 
prior distribution and the data. For the ,y2. , y 3 ,  and ,y4 rotamer prior distributions, we assume that the probability of each 
rotamer type is dependent only on the previous ,y rotamer in the chain. For the backbone-dependence of the , y I  rotamers, 
we derive prior distributions from the product of the +dependent and +-dependent probabilities. Molecular mechanics 
calculations with the CHARMM22 potential show a strong similarity with the experimental distributions, indicating that 
proteins attain their lowest energy rotamers with respect to local backbone,side-chain interactions. The new library is 
suitable for use in homology modeling, protein folding simulations, and the refinement of X-ray and NMR structures. 
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In the last I O  years, the Protein Data Bank (PDB) has more than 
tripled in size. As the PDB has grown, it has become possible to 
analyze protein structure in greater detail and with greater statis- 
tical certainty. Although some studies have been qualitative in 
nature, the size of the database now enables us to put some struc- 
tural variables on a more sound statistical footing. One aspect of 
protein structure that has been analyzed over a period of many 
years is the distribution of protein side-chain conformations. Side- 
chain rotamer libraries (Chandrasekaran & Ramachandran, 1970; 
Cody et al., 1973;  James & Sielecki, 1983; Ponder & Richards, 
1987) consist of a list of discrete side-chain conformations and 
their associated probabilities determined from their frequency of 
occurrence in the PDB. In most cases, these conformations corre- 
spond to "rotamers" or local minima on potential energy maps 
(Bhat  et al., 1979; Gelin & Karplus, 1979; Benedetti et al., 1983) 
with frequencies predictable from conformational analysis of or- 
ganic molecules (Janin et al., 1978; Dunbrack & Karplus, 1994). 
The discreteness of rotamers is  enforced by barriers of 4-10 kcal/ 
mol due  to the overlap of bond molecular orbitals in eclipsed 
conformations (Karplus & Parr, 1963). 
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As more high-resolution structures have become available in 
recent years, it has become possible to determine rotamer prefer- 
ences  as a function of backbone conformation. Earlier efforts found 
weak correlations of rotamer distributions in different secondary 
structures (Janin et al., 1978; McGregor et al., 1987; Sutcliffe 
et al., 1987; Schrauber et al., 1993). With an extended database of 
132 protein chains with resolution better than or equal to 2.0 8, we 
compiled a backbone-dependent rotamer library (Dunbrack & Kar- 
plus, 1993) that gives the side-chain , y I  rotamer distribution for 
each amino acid type and each occupied 10"  by 10" region of the 
+,+ conformation space of the backbone. , y l  rotamer preferences 
show detectable patterns as a function of 4 and $ for all side 
chains that can be explained by simple steric conformational anal- 
ysis (Dunbrack & Karplus, 1994). The backbone-dependent rota- 
mer library has been shown to be useful as a tool for predicting 
side-chain conformations from backbone coordinates for homol- 
ogy modeling (Dunbrack & Karplus, 1993; Bower et al., 1997) 
and for NMR and X-ray structure refinement (Kuszewski et al., 
1996). The results obtained are a significant improvement over 
backbone-independent rotamer libraries. 

Although the larger database presently available affords a more 
complete view of the variation of rotamer preferences as a function 
of 4 and +, much of the Ramachandran map is sparsely populated 
because of backbone-backbone steric exclusions. Even in well- 
populated regions of the Ramachandran map, some rotamers are 
quite rare and their frequencies are therefore statistically unreli- 
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able. For the purposes of homology modeling, protein folding 
simulations, experimental structure refinement, and comparison 
with energy calculations, we need more complete estimates of 
rotamer distributions than are available in the database. In this 
paper, we use Bayesian statistical analysis to account for the vary- 
ing amount of information  in  the  database for ,yI backbone- 
dependent rotamer distributions. In addition, certain combinations 
of the xI ,  , y 2 ,  ,y3, and ,y4 rotamers are rare and the Bayesian 
analysis provides a better estimate of their probability of occur- 
rence than do the data alone. Such “sparse data corrections” have 
been used in the calculations of potentials of mean force from PDB 
data by Sippl(l990) and by Sali and Blundell(1993), although not 
labeled Bayesian statistics as such. 

Briefly, Bayesian statistical analysis provides a framework for 
combining “prior” information about measurable quantities with 
(usually limited) experimental data to determine a better estimate 
of a parameter of interest than the data alone provide. A simple 
example  is in the flipping of a coin that may be slightly biased. As 
prior information, perhaps after a visual inspection, we might pos- 
tulate that the probability of heads (e,,,,) is fairly close to 1/2. We 
guess a probability distribution for Ohrod, that extends between 0 
and 1 ,  but is peaked around ehpod,, = 0.5. If  we flip the coin 10 
times and get 7 heads, we would not be justified in saying that 
ehuod., is 0.7. We need to consider the likelihood of getting 7 heads 
from I O  tosses, given all possible values for the underlying pa- 
rameter Ohradr.  The likelihood function is denoted p ( ~ l 0 ) ,  because 
i t  is the probability of the data y given the parameter 0. In Figure 1, 
we show a prior distribution and likelihood function for the coin 
flipping example. It is clear that the likelihood of getting 7 heads 
from 10 tosses is significant even when eh&, = 0.5. 

The goal of Bayesian analysis is a full view of the distri- 
bution of Ohpad,, given the data, in the coin flipping example, 
p(Oht,ad, I y~2c, ,~/ , , ,n) .  The central equation of Bayesian statistics, de- 
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Fig. 1. Bayesian analysis of a set of coin flips. The prior density was 
calculated assuming 20 heads from 40 tosses for a perfect coin (Ohuad, = 
0.5). The likelihood or data density was calculated assuming 7 heads from 
I O  tosses. The resulting posterior density is also plotted. 
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scribed in Materials and methods, combines the prior distribution 
and the likelihood function to reach the posterior distribution: 

P(OlY) “P(YI@)P(@). (1) 

As shown in Figure 1, in the coin flipping example, the posterior 
distribution for 6hrad.y peaks just above 0.5 because of the observed 
data of 7 heads from 10 tosses. The extent of the shift from the data 
value (0.7)  is incorporated into the analysis by the form of the prior 
distribution. In any case, as the number of observations, n, in- 
creases, the resulting distribution, p(Bhead,rl yhead,y,n) becomes more 
concentrated at the observed ratio of heads to tosses. 

It is central to Bayesian analysis that the posterior distribution is 
more than a point estimate for a parameter such as e k e o &  instead, 
it is a probability distribution over the full range of allowed values 
of the parameter. This aspect can be exploited by simulation, where 
values for the parameter can be drawn randomly from the posterior 
distribution and used to explore the distribution of any function of 
the parameter. This method is used here to show how well the 
calculated posterior distributions for rotamer probabilities corre- 
spond to the raw data in the PDB. 

With a full analysis of the rotamer preferences of protein side 
chains from Bayesian statistics, we compare the experimental data 
with molecular mechanics calculations using the C H A R ”  po- 
tential. Previous calculations (Ponnuswamy & Sasisekharan, 1971 ; 
Sasisekharan & Ponnuswamy, 1971 ; Pullman & Pullman, 1974; 
Janin et al., 1978; Marcus et al., 1996) emphasized the limitations 
that individual side chains place on the backbone conformation. In 
contrast, we show the potential energy surfaces in a way that 
captures the limitations the backbone places on the side-chain 
conformation, and we compare the results with conformational 
analysis based on data on hydrocarbons such as butane and pen- 
tane, as described previously (Dunbrack & Karplus, 1994), and 
with the experimental distributions derived from the Bayesian 
analysis. 

A number of protein-folding models suggests that backbone 
conformations are achieved earlier in folding than final side-chain 
conformations (Shakhnovich & Finkelstein, 1989; Bromberg & 
Dill, 1994; Dill et al., 1995). If this is the case, then the restrictions 
that the backbone places on side-chain conformations are of great 
importance in understanding the thermodynamics and kinetics of 
protein folding. In a subsequent paper, we will examine the cor- 
respondence between energy calculations and the experimental 
data in a more quantitative fashion with a statistical mechanical 
model that examines the influence of both local backbone confor- 
mation and tertiary packing interactions on protein side chains. 

Results 

Bayesian analysis of r,-conditional  backbone-independent 
rotamer populations 

To make a clear distinction between the ,y angles and their corre- 
sponding rotamers, we denote the ,yI rotamer as rl  , the x2 rotamer 
as r2,  etc. The rotamer definitions for all side chains and ,y angles 
are given in Table 1 .  

Given the strong dependence of the ,yI rotamer probabilities 
on the backbone dihedrals I$ and I), we present the backbone- 
independent rotamer library as the probabilities of ,y2, , y 3 ,  x4 

rotamers conditional on the ,yI rotamer. The conditional backbone- 
independent  rotamer  library  therefore  consists of probability 
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Table 1. Limits for rotamer library x angles 

rl rotamers of all residue types except Pro 
1-2 rotamers of Arg, Gln, Glu, Ile, Leu, Lys, Met 
r3 rotamers of Arg, Lys, Met 
r4 rotamers of Arg, Lys 

rl .  r2. r3, r4 Conformation x range 
1 g+  0" + 120" 
2 t 120" + 240" 
3 8 -12OO-t 0" 

- 

1-2 rotamers of Asn, Asp 
r3 rotamers of Gln, Glu 

r2, r3 Conformation x range 
1 g+ 30" -+ 90" 
2 t -30"- 30" 
3 g - 90" + - 30" 

r2 Conformation x range 
1 g 30" + 150" 
2 t -30" + 30" 

r2 rotarners of Phe, Tyr, His 

r2 rotamers of Trp 
r2 
1 
2 
3 

rl rotamers of Pro 
rl 
1 
L 

Conformation x range 
g+  -180"- -60" 
t -60" + 60" 
g 60" + 180" 

Conformation x range 
0" + 90" 

g - 5  -exo' -90" + 0" 

distributions of p(rzrr3,r41rl). This  is in contrast to traditional 
backbone-independent rotamer libraries which consist of values 
for p(r l rrzrr3 ,r4)  (e.g., Ponder & Richards, 1987). 

For methionine, for instance, we would like to estimate values 
for the conditional probabilities of rz = j ,  r3 = k given that rl = i 
or p(r2 = j , r3  = klr, = i )  that would be measured from an 
infinitely large data set. We denote the infinite data set parameters 
for these quantities as Olkl, .  We derive prior distributions from a 
supposition that 

p ( r z  = j ; r 3  = k l r ,  = i )   a p ( r 3  = klr2 = j ) p ( r z  = j l r ,  = j ) .  (2) 

That  is, rotamer probabilities along the chain of the side chain are 
dependent only on the previous dihedral. We use the probabilities 
in Equation 2 as the modes (maximum values) of prior distribu- 
tions for each of the nine Ojkli for each rI rotamer i. The factors on 
the right-hand side of Equation 2 come directly from the raw data 
population probabilities for each side-chain type. Equation 2 is 
quite a good approximation with a correlation coefficient of 0.998 
for the raw data probabilities versus the prior distribution estimate 
for Arg, Met,  Gln,  Glu, and Lys. The  form of both the prior and 
posterior distributions is a Dirichlet function, a generalization of 
the multinomial distribution. In forming the posterior distribution 
from the prior distribution and the data, we need to choose how 
heavily to weight the prior distribution in relation to the data. An 
equivalent statement  is that we need to define the variance of the 
prior distribution compared to the variance of the data. To accom- 
plish this, we scale the prior distribution to correspond to some 
proportion of the data  sample  size with a scale parameter K .  A 

value of 1 .O means that the prior "sample size" is equal to the data 
sample size,  and  the  two parts then make equal contributions to the 
posterior distribution. We find a value of K = 0.5 to be reasonable, 
as described in the Materials and methods. 

In Table 2, the backbone-independent prior distribution param- 
eters derived from  the raw data  are listed for several side-chain 
types. These include values for p(rblr,), where {a,b}  = { 1,2), 
{2,3), or {3,4), as well as the ,y angle averages and their standard 
deviations, (T. The values for these parameters for the remaining 
side  chains  are available on  our website (Dunbrack, 1997).  The 
parameters from the posterior distribution for Met are listed in 
Table 3. Met has 27 r2,r31 rl rotamers, and 10 of these have been 
seen less than 10 times each in  our set of 5 18 protein chains from 
the PDB.  The posterior distribution provides a better estimate for 
the frequency of these rare rotamers than the data  alone, because 
it contains very good estimates in the prior distribution. This  is also 
the case  for Arg and Lys, with 81 backbone-independent rotamers 
each, many of which have never been seen in protein structures 
because of their significant steric strain. It is the case that for 
all side chains except Asn and Asp, there is little or no dependence 
of Ojli  or X 2 (  j l i )  on and +. The backbone-independent li- 
brary therefore consists of values for the parameters and 
{ X 2 ,  X3.X4}( j,k,ll  i). The full backbone-independent library is also 
available on our website (Dunbrack, 1997). 

Bayesian analysis of backbone-dependent 
rotamer populations 

Determination of the backbone-dependent rotamer library is more 
difficult than the backbone-independent library because of the large 
number of parameters to be estimated. We would like to define the 
probabilities of the three rl  rotamers (two for Pro) for all values of 
+ and + on a grid with 10" spacing. The infinite data parameters 
will be denoted Orlab for the proportion of side chains with rl = i 
in a region near { 4 = IJ = +b). Because of the constraint that 
.CiOi lab  = 1, the total number of parameters is 2 X 36 X 36 or 
2,592 for each side-chain type. Because the data are very concen- 
trated in particular +,+ regions (a-helix and P-sheet regions), we 
need some procedure for estimating the probabilities across the 
Ramachandran map. The full procedure is described in Materials 
and methods, but the results of each stage will be illustrated here. 

The first step  is to count the side chains of each rotamer type 
using weighting functions shown in Figure 2 (illustrated for +a = 
-60", +b = -60"). The weighting function in Figure 2A, defined 
in Equation 7 in Materials and methods, has a Gaussian shaped 
peak at It also has much smaller peaks at [+a ? 180°, +b) 

and {+,, +b 2 180") and a very small peak at [ 4, ? 180", +b 2 
1 80"). Because the backbone-conformation dependent steric inter- 
actions that affect rotamer preferences are periodic in + and + 
every 180" (Dunbrack & Karplus, 1994) (described in detail be- 
low), the secondary peaks in the  weighting function serve to 
supplement very sparse regions with data from regions of the 
Ramachandran map 180" away in + and/or +. In most cases, 
heavily populated regions in the primary peak correspond to sparsely 
populated regions in the secondary peaks and vice versa. In Fig- 
ure 2B, we show the function used in  our previous work (Dun- 
brack & Karplus, 1993), denoted W;'I(+,+). which gives weights 
of 1.0 to side chains with + and + within 10"  of the +,+ point 
and 0.0 to all  others. In Figure 2C, the product of the func- 
tions in Figure 2A and B is shown. This function,  denoted 
W:r-Pe'(+,+), counts only side  chains within 10" of +,e, but with 
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Table 2. Backbone-independent prior distribution parametersa 

R.L. Dunbrack, Jz and EE.  Cohen 

Leu rz I rl 

Phe r21r1 

Met r21r1 

ro 
- 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

rb 
- 

I 
2 
3 

1 
2 
3 

I 
2 
3 

I 
2 
3 

1 
2 
3 

I 
2 
3 

1 
2 

1 
2 

1 
2 

1 
2 
3 

1 
2 
3 

1 
2 
3 

I 
2 
3 

1 
2 
3 

I 
2 
3 

1 
2 
3 

1 
2 
3 

I 
2 
3 

n(rblra) 

229 
393 
200 

639 
611 
2 76 

263 
945 

1,613 

80 
59 
4 

2,408 
349 

95 

742 
4,677 

I 73 

541 
6 

1,360 
97 

1,984 
360 

156 
15 
96 

245 
107 
190 

94 
I85 
544 

11 
157 

8 

185 
380 
43 

22 
754 
508 

136 
55 
27 

542 
313 
436 

74 
99 

386 

P ( r b l r o )  

2 7.86 
47.81 
24.33 

41.87 
40.04 
18.09 

9.32 
33.50 
57.18 

55.94 
41.26 

2.80 

84.43 
12.24 
3.33 

13.27 
83.64 
3.09 

98.90 
1. I O  

93.34 
6.66 

84.64 
15.36 

58.43 
5.62 

35.96 

45.20 
19.74 
35.06 

11.42 
22.48 
66.10 

6.25 
89.20 
4.55 

30.43 
62.50 

7.07 

1.71 
58.72 
39.56 

62.39 
25.23 
12.39 

41.98 
24.24 
33.77 

13.24 
17.71 
69.05 

X a  

59. I 
64.7 
66.0 

-170.6 
-170.2 
-169.1 

- 75.9 
-72.6 
-66.6 

60.9 
67. I 
52.8 

-176.5 
-156.3 
-165.1 

-93.3 
-65.5 
-82.7 

62.5 
68.6 

-178.7 
-172.5 

-66.4 
-70.3 

60.8 
69.4 
58.9 

-177.8 
-174.6 
-179.5 

-67.8 
-69.2 
-68.3 

62.5 
61.0 
67.4 

-170.5 
-176.2 
-172.6 

- 78.0 
-68.8 
-65.7 

67.8 
71.6 
72.9 

179.1 
179.5 

-177.9 

-66. I 
-67.9 
-65.5 

U" 

(12.3) 
(8.3) 

(14.0) 

(14.3) 
(13.3) 
(14.9) 

(20.2) 
(10.1) 
(12.7) 

(17.4) 
(16.4) 
(12. I )  

(14.5) 
(18.9) 
(16.3) 

(15.4) 
(1 1.2) 
(15.4) 

(10.6) 
(11.7) 

(11.3) 
(11.3) 

(11.4) 
(11.9) 

(12.3) 
(6.6) 

(13.2) 

(12.6) 
(12.7) 
(10.8) 

(14.3) 
(9.5) 

(10.6) 

(18.5) 
(12.4) 
(13.5) 

(14.8) 
(15.1) 
(17.3 

(27.6) 
(11.1) 
(11.6) 

(15.4) 
(18.2) 
(20.7) 

(13.3) 
(14.7) 
(14.0) 

(13.6) 
(16.9) 
(14.5) 

X b   O b  

59.3 
0.0 

-56.6 

55.1 
1.5 

-57.1 

68.1 
-13.0 
-56.6 

77.8 
164.3 
-42.3 

63.6 
- 176.6 
- 75. I 

42.7 
175.8 
-43.3 

91.0 
-2.6 

77.1 
28.4 

97.6 
-14.3 

-90.8 
-16.0 

88.9 

-104.2 
22.6 
83.2 

-90.8 
-3.0 
98.4 

78.5 
-177.8 
-83.2 

67.1 
177.3 
-87.7 

83.8 
-178.8 
-63.9 

72.5 
-175.6 
-92.0 

71.9 
-176.0 
-75.0 

99.2 
169.6 
-70.4 

(16.9) 
(16.1) 
(17.0) 

(16.3) 
(17.7) 
(18.4) 

( I  7.3) 
(12.8) 
(16.4) 

(18.4) 
(20.5) 
(34.2) 

(11.9) 
(29.4) 
(25.0) 

(26.0) 
(11.1) 
(24.9) 

(10.6) 
(37.1) 

(13.9) 
(18.9) 

(16.4) 
(23. I )  

(10.6) 
(42.8) 
(9.6) 

(14.9) 
(28.2) 
(10.5) 

(1 7.9) 
(26.9) 
(16.5) 

(11.9) 
(15.2) 
(12.3) 

(15.6) 
(14.8) 
(12.4) 

(20.9) 
(12.9) 
(13.4) 

(16.9) 
(30.6) 
(27.3) 

(19.4) 
(25.5) 
(19.5) 

(12.5) 
(28.3) 
(15.8) 

(continued) 
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Table 2. Continued 

I 
2 
3 

1 
2 
3 

I 
2 
3 

1 
2 
3 

1 
2 
3 

I 
2 
3 

1 
2 
3 

1 
2 
3 

I 
2 
3 

21 
382 

13 

245 
1,251 

66 

I08 
1,963 

523 

121 
222 

31 

915 
1,593 
1,088 

68 
316 
218 

352 
63  1 
121 

467 
1,074 

590 

I79 
688 
470 

p(rbIry) 

5.05 
91.83 

3.12 

15.69 
80.09 
4.23 

4.16 
75.67 
20.16 

32.35 
59.36 

8.29 

25.44 
44.30 
30.26 

11.30 
52.49 
36.21 

31.88 
57.16 
IO. 96 

21.91 
50.40 
27.69 

13.39 
51.46 
35.15 

54.8 
63.1 
65.3 

-176.5 
-174.5 
-160.7 

-85.4 
-67.9 
-62.1 

77.6 
72.0 
76.0 

176.8 
179.5 

-175.5 

-80.7 
-72.1 
-75.4 

66.5 
68.4 
72.0 

176.7 
-179.1 
-177.3 

-74.1 
-69.5 
-66.5 

(25.3) 
(15.1) 
(27.4) 

(17.2) 
(15.4) 
(22.8) 

(19.5) 
(13.7) 
(14.7) 

(20.9) 
(20.5) 
(21.2) 

(20.4) 
(17.5) 
(19.0) 

(22.2) 
(16.9) 
(20.1) 

(17.9) 
( 19.9) 
(21.9) 

(20.3) 
(20.7) 
(18.3) 

(22.2) 
(19.3) 
(17.6) 

88.3 
-179.4 
-80.6 

71.3 
178.8 
-86.9 

77.9 
-178.7 
-72.5 

69.8 
177.7 
-83.7 

67.1 
-179.2 
-68.6 

79.9 
-179.4 
-69.5 

84.4 
-171.5 
-99.2 

86.8 
177.5 
-87.5 

103.5 
170.8 
-86.4 

(14.3) 
(18.9) 
(22.5) 

(19.2) 
(20.0) 
(21.4) 

(23.5) 
(18.3) 
(17.9) 

(19.4) 
(24.6) 
(21.5) 

(19.1) 
(19.6) 
(19.1) 

(22.0) 
(18.9) 
(19.1) 

(17.4) 
(29.0) 
(22.5) 

(19.8) 
(28.3) 
(17.4) 

(13.2) 
(29.4) 
(16.4) 

aRotamer pairs with syn-pentane (1.3 or 3.1) interactions are in italics. All others are in bold. Rotamer designations are defined in 
Table I .  

a weight similar to that in Figure 2A.  It will be used to count data 
for the likelihood function (see below). To check that the periodic 
and nonperiodic functions do not alter the probabilities signifi- 
cantly from our previous "box" function, we calculated the corre- 
lation coefficients for values of [4,+) with more than 20 side 
chains counted with Wbox. For Wper, the correlation coefficient 
with W br'x was 0.987, and  for W "On-per, the correlation coefficient 
with Wb" was 0.999. Between W p e r  and Wnon-per the correlation 
coefficient was 0.985. 

The next step is to use the weighted counts of Wper to derive a 
prior density distribution for use in a Bayesian analysis for the 
backbone-dependent rotamer library. We choose a prior density 
distribution centered on a product of +dependent densities and 
+-dependent densities, i.e., 

The factors on the right-hand side of Equation 3 can be calculated 
by taking the logs of each side of Equation 3 and solving the 
resulting linear equations by singular value decomposition. The 
approximation in Equation 3 is not quite as good  as  the backbone- 
independent case, but good enough to provide reasonable estimates 
of the probabilities throughout the Ramachandran map. For Arg, 

for instance, the correlation coefficient for { 4,+) values in  occu- 
pied regions of the Ramachandran map (>20 side chains) between 
the prior distribution values calculated from the right-hand side 
of Equation 3 and the raw data values calculated with function 
w n o n - p e r  IS ' 0.952. 

As with the backbone-independent prior distributions (Equa- 
tion 2), values of p(r1 = i l& ,+b) ,  denoted tl(Lr, defined in 
Equation 3 indicate the central values (modes) of Dirichlet prob- 
ability distributions or p(@jlab) .  In Figure 3, we show the prior 
distribution modes calculated with the weighting function Wper for 
several side-chain types plotted on top of bar charts of the data 
measured with the nonperiodic weighting function Wnon-per for 
values of 4, and +h with y,  > 20 or Y b  > 20. The procedure used 
to derive the curves in Figure 3 attempts to decouple the 4 and + 
dependence, and so, for instance, the +-dependence of the r ,  = 3 
rotamer prior density is much flatter than the data density (the bars 
in Figure 3). In this case, the prior density does not respond to the 
strong variations of the probabilities of the other  two rotamers 
with +. 

In Figure 4, we show the prior distribution, the data density 
calculated with the weighting function Wper and with W n o n - p e r ,  

and the posterior distribution for the three rl  rotamers of Arg. 
Comparing the data in Wno'"per with the other plots demonstrates 
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Table 3. Methionine backbone-independent posterior distribution parameters 

rl r2  r3 n ( r ~ )   n ( r ~ , r ~ , r d  p(rI,rz,r3) (u) p(rz,r3lrI) (u) Ave.,yI a(,yI) Ave.,yz u(,yn) Ave.,y3 u(,y3) 

1 1 1  
2 
3 

2 1  
2 
3 

3 1  
2 
3 

I76 
1 76 
I76 

176 
176 
176 

I76 
1 76 
I 76 

7 
3 
I 

66 
31 
60 

0 
3 
5 

2 1 1 608  119 
2  608 45 
3 608 21 

2  1 608 163 
2 608 89 
3 608 128 

3 1 608 I 
2 608 7 
3 608 35 

3 I 1 1,284 
2 1,284 
3 1,284 

2 1 1,284 
2 1,284 
3 1,284 

3 1 1,284 
2  1,284 
3  1,284 

10 
7 
5 

313 
193 
248 

73 
89 

346 

0.37 
0.17 
0.09 

3.19 
1.63 
2.80 

0.05 
0.15 
0.28 

5.68 
2.22 
1.07 

7.79 
4.35 
6.17 

0. I5 
0.38 
1.62 

0.57 
0.34 
0.24 

15.09 
9.12 

12.03 

3.44 
4.31 

16.70 

(0.1 I )  
(0.07) 
(0.05) 

(0.31) 
(0.23) 
(0.29) 

(0.04) 
(0.07) 
(0.09) 

(0.41) 
(0.26) 
(0.18) 

(0.48) 
(0.36) 
(0.43) 

(0.07) 
(0.11) 
(0.23) 

(0.13) 
(0.10) 
(0.09) 

(0.64) 
(0.51) 
(0.58) 

(0.33) 
(0.36) 
(0.67) 

4.19 
1.97 
0.98 

36.61 
18.69 
32.06 

0.56 
1.72 
3.21 

19.29 
7.53 
3.63 

26.47 
14.77 
20.97 

0.53 
1.28 
5.52 

0.92 
0.56 
0.38 

24.41 
14.75 
19.45 

5.56 
6.98 

27.00 

(1.21) 
(0.84) 
(0.60) 

(2.91) 
(2.36) 
(2.82) 

(0.45) 
(0.79) 
(1.06) 

( 1.30) 
(0.87) 
(0.62) 

( 1.45) 
(1.17) 
(1.34) 

(0.24) 
(0.37) 
(0.75) 

(0.22) 
(0.17) 
(0.14) 

(0.98) 
(0.81) 
(0.90) 

(0.52) 
(0.58) 
(1.01) 

65. I 
56.8 
62.5 

61.1 
56.9 
63.2 

67.4 
62.0 
71.2 

-172.0 
-169.0 
-165.6 

-177.8 
-173.9 
-175.8 

-172.6 
-177.0 
-172.0 

-91.6 
-57.7 
-83.7 

-69.7 
-67.9 
-68.2 

-66.3 
-65.8 
-65.6 

(22.4) 
(13.6) 
(18.5) 

(10.1) 
(17.5) 
(11.4) 

(13.5) 
(15.0) 
(12.4) 

(12.8) 
(14.8) 
(22.7) 

(14.5) 
(15.7) 
(15.4) 

( I  7.3) 
(28.4) 
(14.4) 

(17.1) 
(34.4) 
(10.7) 

(11.0) 
(10.8) 
(11.4) 

( I  0.5) 
(12.2) 
(11.7) 

72.5 
88.2 
77. I 

-177.2 
-177.7 
-178.5 

-75.5 
-81.2 
-81.6 

65.7 
67.1 
74.7 

176.7 
176.1 
179.0 

- 77.9 
-91.0 
-86.6 

86.4 
89.0 
62.5 

179.5 
-179.4 
-176.2 

-66.0 
-65.3 
-63.1 

(6.9) 
(12.3) 
(10.3) 

(14.6) 
(17.5) 
(14.9) 

(9.1) 
(18.4) 

(8.8) 

(13.8) 
(15.6) 
(22.6) 

(14.3) 
(16.5) 
(14.4) 

(9.1) 
(15.2) 
(11.5) 

(20.6) 
( I  7.8) 
(10.0) 

(12.2) 
(13.1) 
(13.4) 

(13.7) 
(14.9) 
(12.9) 

71.5 
147.4 
-92.0 

75.3 
179.3 
-74.2 

99.2 
179.0 
-62.7 

73.6 
-171.3 
-86.8 

71.7 
178.4 
-75.0 

99.2 
-178.2 
-77.2 

61.6 
174.7 

-109.2 

71.3 
-172.6 
-75.2 

99.2 
168.1 
-69.9 

(17.7) 
(7.9) 

(27.3) 

(18.3) 
(26.1) 
(20.5) 

(12.5) 
(36.4) 
(28. I )  

(15.4) 
(28.7) 
(29.0) 

(20.7) 
(26.4) 
(21.2) 

(12.5) 
(30.2) 
(11.4) 

(26.9) 
(38.0) 
(7.4) 

(19.0) 
(24.5) 
(18.4) 

(12.6) 
(27.8) 
(15.8) 

the utility of the Bayesian method for combining an informative 
prior distribution with the Wnon-per  data to produce the posterior 
distribution. The W non-per data cover a small percentage of the total 
#,+ plot with isolated regions with existent data and large regions 
with no data. The prior distribution is a smoothed and partially 
symmetrized reconstruction of the data. Adding back the nonperi- 
odic  data to the prior distribution to produce the posterior distri- 
bution ensures that, in populated regions, the posterior distribution 
represents the  data quite closely. In less populated regions, how- 
ever, the prior distribution is  more important and more likely to be 
accurate than the nonperiodic data alone. In unpopulated regions, 
the raw data  are of no  use, and we must rely on the accuracy of the 
prior distribution defined in Equation 3. 

In Figure 5, we show the results for three more side-chain types 
(Asp, Phe,  and Val) to demonstrate the similarities and differ- 
ences between various types of residues. Side-chain pairs with 
similar stereochemistries behave similarly, especially with simi- 
lar chemistry at both the p and y positions (e.g., Asp-Asn, Lys- 
Arg, Phe-Tyr). The  differences between the  P-unbranched and 
&branched side-chain  distributions are clearly due  to  Cylback- 
bone interactions.  Branching  at y and  electrostatic  interactions 
also affect the distributions  in less drastic  ways (e.g., Asp-Arg, 
Lys-Phe). 

As noted earlier, the backbone-dependent library does not in- 
clude a dependence of r2 rotamers on  the backbone dihedrals # and 

$, except in the case of Asp and Asn. Asp and Asn x2 distributions 
are not described easily as rotamers, because the distributions are 
nearly continuous with only one mode. But there is a significant 
skew to the distributions due to backbone-conformation-independent 
syn-pentane  effects  with  backbone Nj and Cj  and  backbone- 
conformation-dependent electrostatic effects with backbone atoms 
of residues i - 1, i ,  and i + 1.  To represent the skewness of the 
distributions, we define rotamers for x2 for Asp  and Asn in Table 1 
centered at +60°, O", and -60". With these definitions, we can plot 
the r2 probabilities varying with q5 and +. 

There  is a weak dependence of p(r21 rl  ) on # and + for Lys, Met, 
Glu,  Gln, Arg, Ile,  and Leu (data not shown). For  example, the 
values of p(r21 r I )  for r2 = 2(t)  range from 60% to 80% with # and 
9 in an identical manner in all of these  side chains, with similar 
variations in the r2 = 1 and r2 = 3 rotamers. But for weakly 
populated values of q5 and +, there  are not enough  data to deter- 
mine these values, even with the periodic weighting function used 
to determine  the backbone-dependence of the rl rotamers. 

The situation for  Asp and Asn is quite different. There are large 
shifts inp(r21rl) probabilities with changes  in backbone dihedrals, 
in some  cases  shifts of density of 80% or more. The backbone- 
dependent rotamer library for  Asp and Asn therefore contains val- 
ues forp(rl ,  r21#,+), whereas for the other side chains, the backbone- 
dependent part of the library contains only the parameters for 
P('I 144). 
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A. WDer 

B. Wbox 

C. Wnon-per 

Fig. 2. Weighting functions for counting backbone-dependent rotamers. 
A: W ( y  (&+); B: Wfr (r$,+); C: W;;:"'" (4.e) for = -60". ( Ih  = 
-60". The functional forms are given in  the text. 

x angles in side  chains depend on a number of variables, but we 
would like to estimate their averages conditional upon backbone 
conformation. With an infinitely large database, we would simply 
calculate the distribution of x angles, ( j I , 2 2 , # 3 , j 4 } ,  as a func- 
tion of (+,t,b,rlrr2.r3,r4). There are not enough  data in the data- 
base for rare and  even not-so-rare rotamers to determine  this many 
parameters, and so we make  use of informative prior distributions 
and calculate only a subset of the possible x angle parameters. The 
prior distributions are based on the approximation that x angle 
averages are likely to depend only on  their  own rotameric state  and 
the rotameric states (or and # dihedrals in the case of r l )  one 
previous in the  chain  and one after in the chain. As an example, we 
show  the one-dimensional prior  distributions  for xI averages as a 
function of # in Figure 6 for all several side-chain types. The forms 
of these functions are explained easily with the conformational 
analysis reviewed in the next section. We combine the prior dis- 
tributions for the xI angles  as  shown in Figure 6 with the  data to 
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derive posterior distributions for the backbone-dependent averages 
of xl, The backbone-dependent library now consists of values for 
Oiloh and ( j I  )(TI = ilc#Ja,&,). These results can be combined with 
ejk,li and ( j 2 , j 3 , j 4 } ( r z  = j , r3  = k,r4 = llrl = i )  to form the 
complete library. 

Conformational  analysis of 
backbone-independent  interactions 

As a very simple model for steric interactions in biopolymers, we 
have previously compared the distribution of side-chain rotarners 
with steric interactions that are well-documented in simple hydro- 
carbons  such as butane and pentane (Dunbrack & Karplus, 1994). 
The barrier to rotation in ethane  was estimated to be 3.0 kcal/mol 
as early as the 1930's (Kemp & Pitzer, 1937) with potential energy 
maxima in the "eclipsed conformations (i.e., with a dihedral H-C- 
C-H = 0") and minima with the hydrogens "staggered" with each 
H-C-C-H dihedral equal to +60", 180". or -60". From spectro- 
scopic data and the experimental thermodynamics of longer hy- 
drocarbons, it was also clear that certain combinations of neighboring 
dihedrals, namely g+,g- and g-,g+, in longer hydrocarbons were 
not allowed because of steric hindrance between carbon atom i and 
i + 4 of the chain (Pitzer, 1940a, 1940b). Recent high-level ab 
initio  calculations (Wiberg & Murcko, 1988) and experimental 
measurements (Dung & Cornpton. 1979; Compton et al., 1980) 
have  shown that the  single gauche interaction in butane is about 
0.9 kcal/mol higher than the global minimum trans conformation 
(1 80"). The  ab initio energy of two consecutive gauche interactions 
of like sign in pentane has an energy of 1.4 kcal/mol above the 
global minimum ( t , t }  conformation,  whereas  the syn-pentane 
(g',g- } conformation had an energy of 3.3 kcal/mol above ( t , t )  
(Wiberg & Murcko, 1988). 

Side-chain y and 6 heavy atoms (of the ith residue) can interact 
with backbone atoms Ni and Ci in ways that are dependent on the 
values of xI and x2, These interactions have been recognized for 
some  time as being responsible for the ( rl  ,rZ) rotamer distribution 
of protein side  chains (Chandrasekaran & Ramachandran, 1970). 
In Figure 7A, we show a Newman projection of ( rl  , rz } rotamers 
for hydrocarbon side  chains (Lys, Arg, Met, Glu, Gln, Leu, Val, 
Ile). In Table 4, the backbone-independent gauche and syn-pentane 
interactions for all side-chain types  are listed. We can count these 
interactions to get a rough estimate of steric and dihedral strain in 
the various rotamer combinations. Each gauche interaction, g, costs 
about 0.9 kcal/mol, whereas each syn-pentane interaction costs 
2g + p .  where p = 1.5 kcal/mol. We also  include the CHAR" 
energies in Table 4 for the 2-amino pentanoic acid ("Ape"; side 
chain = (Ccr)-CHz-CH2-CH3), ne, and Leu side chains. These 
energies are given relative to the lowest energy for each rl rotamer, 
and therefore represent the interactions responsible for the param- 
eters of the conditional backbone-independent rotamer library de- 
scribed above. 

The rl  and r2 rotamers of Lys, Arg, Met,  Glu,  Gln,  Leu, and ne 
are exactly analogous to the g+, t ,  and g- rotamers of butane and 
pentane, because, for these  side chains, the xI and x2 dihedral 
rotations  are about sp3-sp3 carbon-carbon bonds (xl = Ccu-Cp 
and x2 = Cp-Cy). For the aromatic  side  chains and Asn and Asp, 
the y heavy atom has an sp2 hybridization state, and therefore the 
x2 rotation is not described by the g+, t, g- rotameric states. 

The energy curves of the peptide fragment of 2-amino pentanoic 
acid are given in  Figure  8A as a function of x2 for each of the three 
rl rotamers. Four of the nine local minima have syn-pentane in- 
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P 

Fig. 3. Data calculated with the nonperiodic weighting function (solid bars) for y ~ " ' "  and $"''p" and the prior density function from 
W'"' (lines) for ( A )  Arg, &: ( R )  Arg, $: (C) Phe. 6: (D) Phe. JI: (E) Asp, &: (F) Asp, $: ( G )  Val. &; (H) Val. JI. Regions of d~ or JI 
where interactions between backbone atoms and Cy are likely to lower the populations of certain rotamers are marked with arrows. 
Arrows point from values of the dihedral connecting the backbone atom to Cp from -90" to 0" or from +90° to 0". See Table 5 .  (Figure 
conrinues on following  pages.) 

teractions: when N, and CS ( x ,  .xr) are connected by ( g + , g -  } or 0.5-0.9 kcal/mol over the global minima, ( t , t )  and [ g - , r ] .  These 
(g-,g+ ] dihedrals, and when C ;  and CS (xl - 1 2 0 " , ~ ~ )  are con- interactions are listed in Table 4 and rotamer pairs with syn- 
nected by (g+.g- ] or ( g - , , g +  ] dihedrals. These four are evident pentane interactions are indicated in the experimental data listed in 
in Figure 8A at the [g+,g+ 1, [g+.g- 1, [ t , g -  }, and (g-,gf ] Table 2, all with very low probabilities and with skewed x angles. 
positions. Three of the remaining five rotamers have gauche in- Ile resembles the Ape side  chain, except that the rl = g- rota- 
teractions ( ( g + . t ] ,  ( t , g + ] ,  and (g-,g-]).  raising the energy by mer is lower in energy than the other two rotamers because of 
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gauche interactions with backbone Nj and C; (equivalent to Val t ro- 
tamer). Leu has 6 atoms at and x 2  + 120". and so there is  a total 
of eight syn-pentane interactions. These occur  for all three r l  = g+ 
rotamers, and so Leu is very unlikely to be  in a g +  rotamer. The con- 
ditional probabilities for the rl  = g + rotamer of Leu in Table 2 shows 
that the ( g + , g -  } rotamer has much lower probability than the other 
two g',gc and g + , t .  The reason is evident from Table 4, because 
the (g+,g- ) combination has two syn-pentane interactions with the 
backbone, whereas the other two r l  = g A  rotamers have only one. 

In Figure 8B, the energies of Phe rotamers demonstrate that the 
rl  rotamer affects the position of the local xZ minimum. Assuming 
the sp3-sp' rotation about Ca-CP has minima at +90" and -90", 
there is some deviation in the t and g- rl rotamers. These are 
caused by interactions of the C6 atoms with backbone N; and C;: 
when rl  is g-, a syn-pentane interaction when xz is below 90" 
pushes the minimum to ,yz = +100"; when rl  is r, a syn-pentane 
interaction when xZ is above 90" pushes the minimum down to 
x 2  = +78". g +  rotamers are always higher than g- and t rotamers 
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by more than 1.5 kcal/mol because of syn-pentane interactions 
between C6, and  C6'  and  N,  and C,. 

We note that typical  molecular  mechanics  calculations  for 
p ( r l r r 2 . r 3 . r J )  (Nayeem & Scheraga, 1994) resemble our ,, and 
not OlJkI. The traditional backbone-independent rotamer library pa- 
rameters, p ( r I , r 2 . r 3 . r J ) ,  are determined both by the relative ener- 
gies of the three rotamers in each backbone conformation, and by 
the populations of side chains in different backbone conformations 
(i.e.. the Ramachandran map distribution). They can be calculated 
by integrating the product of the conditional backbone-independent 
probabilities and the backbone-dependent rl  probabilities over the 
whole Ramachandran map, 

E (  Ova/) p (  r l  = i .  r2 = i, r3 = i ,  r, = i )  

Conformational analvsis of 
backbone-conformation-dependent interactions 

Rotamer populations are affected not only by backbone N,  and C, 
of residue i whose positions arc independent of 4 and 4, but also 
by the positions of other backbone atoms, especially C,- ,, O;, and 
N,,,, whose positions are dependent on 4 and 4. These three 

atoms are all connected to y heavy atoms by two sp3 hybridized 
atoms (CP and Ca)  and one sp' hybridized atom (backbone N, or 
C,). There are therefore two dihedral degrees of freedom separat- 
ing the y heavy atoms with the backbone atoms C,- ,, H,, Oi, and 
N,+ I (see Fig. 7B for the Newman projection of the side-chain with 
the dipeptide backbone added). We include H, and its hydrogen 
bond acceptor, because there are apparent shifts in rotamer popu- 
lations due to this interaction. Hence, there is the possibility of 
syn-pentane interactions between any of these atoms and side- 
chain y atoms when the connecting dihedrals occur in (g ' ,g-  ) or 
[g- ,gA ) combinations. The interactions are of smaller magnitude, 
because bond angles at the sp' hybridized atoms are 120" instead 
of 109.5'. They are nevertheless of sufficient magnitude to alter 
the rotamer distributions significantly. The  syn-pentane inter- 
actions that occur between y heavy atoms and backbone atoms 
dependent on 4 and I) are listed in Table 5, along with the probable 
ranges of interaction. As  with pentane, the range of interaction is 
about 90". 

We calculated the energies of the x, rotamers of several sidc 
chains to investigate how well the CHARMM potential describes 
the experimental distributions of the backbone-dependent rotamer 
library. This was done by minimizing the energy of the dipeptide 
of each residue type (N-acetyl-Xxx-N'methylamide) with 4 and 
4 constrained to values in IO" increments. The probability surfaces 
of the three rotamers of 2-amino butanoic acid ( A h )  and valine as 
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a function of 4 and +b are shown in Figure 9A and B, respectively. 
To produce these figures, we assumed kT = 1. 

When rl = g+. we expect a syn-pentane interaction when 4 = 
60" (Cy and Ci-  I ) and - 120" (Cy and O---HNi)  and when +b = 
-60" (Cy and Ni+ I ) and 120" (Cy and 0). These  are shown clearly 
as the vertical and horizontal darker regions in the first panel of 
Figure 9A  for the Abu side-chain. These  are  also evident as troughs 
in the experimental data in the rl = I panels of Figure 3 (marked 
by arrows). These interactions also appear as the dark regions in 
the rl  = 1 panels of Figure 4 and Figure 5. The C Y / C ; - ~  inter- 
action is the largest, approximately 3.2 kcal/mol, whereas the C y /  
Ni+ I and Cy/Oj  interactions are 1.6 and 1.2 kcal/mol, respectively. 
In the second panel of Figure 9A. the interactions o f t  rotamer Cy 

1 

-100 0 1 0 0  - 1 0 0  0 1 0 0  

m 

Fig. 4. Bayesian analysis of backbone-dependent rotamer populations of 

of the data calculated with the nonperiodic function W"''n-''cr (the "data"), 
Arg: A: r l  = R .  : B: r l  = r;  C: rl = x - .  Each figure shows density plots 

Wpr' (used to calculate the prior distributions). the prior distributions, and 
the posterior distributions. In the W"""-pPr plots, regions outside the contour 
lines represent values of @ and @ with no side chains in the database. 

with Ni+  I when +b = ? 180" and Cy with Oi when +b = 0" are also 
evident. These probability minima are also evident experimentally 
in the rl = 2 panels of Figures 3,4, and 5. Again, these interactions 
are marked by arrows in Figure 3. The third panel of Figure 9A 
confirms the C y / C i -  I interaction when c$ = 5 180" and near 0" for 
the g- rl rotamer, as shown in the data in Figures 3.4, and 5. It is 
worth noting the weak +b dependence in the g- panels, reflecting 
changes in the energies of the other two rotamers as  a function of 
+b. It is clear from the three maps that the x,  = - 60" conformation 
of Abu is the most favored in much of the heavily occupied por- 
tions of the Ramachandran map (Le., - 120" 5 c$ 5 -40"; -80" 5 
+b 5 -30" and 1 0 0 "  5 +b 5 150"). rl = t has steric interactions 
with backbone atoms in extended backbone conformations and 
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Fig. 5. Average backbone-dependent posterior parameters for Asp, Phe. 
and Val. The averages are given by the expectation values of Equation 14. 

near +b = O", whereas rl  = 60" has steric conflicts in P-sheets as 
well as  a-helices. 

In Figure 9B, the CHARMM probability and energy surfaces for 
Val are shown. The alternation between t and 8 -  rotamers with 
variation in +b is  due to interactions with each y carbon with 
backbone N,+I and 0,. which result in the troughs at +b = 0" and 
180" for the second panel ( t )  and  at +b = -60" and  120"  in the third 
panel ( g - ) .  Both of these rotamers have steric interactions with 
Ci- I at #J = - 180". and so the g+ rotamer in  the first panel has 
high density in this region. These figures can be compared with the 
experimental probabilities from the Bayesian analysis for Val  in 
Figure 3G and H, and Figure 5. 

Finally,  in Table 6, we show the prediction rates for the backbone- 
dependent rotamer library. The data in this table were obtained by 
predicting the side-chain conformation for each side chain in the 
database based on the identity of the rI rotamer with the largest 
probability in the posterior distribution, given the values of #J and 
+b for that side chain. No optimization or removal of steric clashes 
was performed. The library is able to predict 73% of xi's of side 
chains that have structures within 40" of one of the canonical 
sp3-sp3 rotamers (+60", 180". -60"). From the steric analysis and 
the CHARMM calculations, it seems that most of these are steri- 
cally the lowest energy minima (Le., ignoring electrostatic inter- 
actions in polar side  chains) given the local backbone dihedral 
angles #J and e. Another 22% of side chains adopt the next most 
likely local minimum energy structure, and the final 5% the high- 
est energy, least likely local minimum. Close to 4% of all side 
chains are not within 40" of one of the g + ,  g - ,  and t rotamer 
conformations. It is likely that most of these are  either an average 
of two occupied rotamers, or an error of interpretation of electron 
density, given the high energy price paid (3-6 kcal/mol) for these 
strained conformations and that proteins are only marginally stable 
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(AGfi,/,/i,,,v = 5-20 kcal/mol). It would seem that a protein would 
not  be able to afford more than one or two such side-chain con- 
formations, and  it would therefore be useful to scrutinize the elec- 
tron density carefully in such cases to determine if there are 
interactions that explain the high-energy conformation or whether 
a more plausible conformation can be found (Schrauber et al., 
1993). 

These results can be considered minimum values for any side- 
chain prediction method for the self-backbone prediction test, be- 
cause they were obtained with no computational effort beyond 
looking up the best rotamer in the database. We have recently used 
the backbone-dependent rotamer library described in this paper in 
a prediction program that removes steric clashes after the backbone- 
dependent rotamer library prediction (Bower et al., 1997). Remov- 
ing steric clashes in a set of 299 self-backbone side-chain prediction 
tests raises the prediction rate from 73% to 78%. We compared 
X-ray structures of identical proteins in different crystal space 
groups and found that only 80% of side chains retain their rl  
rotamers in different crystal structures. It is likely that a large 
fraction of the remaining 20% are in two different rl  rotamers, one 
of which is the lowest energy rotamer for the local backbone 
conformation. 

Discussion 

Understanding the factors that determine protein side-chain con- 
formation and its dynamics is important in a number of areas. First, 
the fact that the backbone has such a strong effect on side-chain 
conformation distributions is likely to be exploited by proteins as 
they fold. This effect may also operate as proteins evolve if  mu- 
tations of residues with unfavorable steric interactions to residues 
without these interactions increase the stability of  the folded pro- 
tein. This topic has been studied extensively using site-directed 
mutagenesis to probe the structural and thermodynamic implica- 
tions of a  side chain's interaction with its environment. Mutations 
that increase or decrease local backbone-side-chain steric inter- 
actions might be expected to have some effect on the stability of 
the folded structure, because these interactions are presumably 
absent in the unfolded state. 

Second, homology modeling of proteins for the purposes of drug 
design depends mostly upon  an accurate representation of  the side- 
chain conformations in the target structure. It has proved very 
difficult to model the insertion and deletion of loops in proteins, 
but, in cases where these insertions are far from the binding site of 
an enzyme substrate or allosteric effector, it is only the binding site 
side-chain conformations that must be constructed carefully. Be- 
cause proteins favor their dipeptide low-energy rotamers in their 
folded states, the backbone-dependent rotamer library is especially 
helpful in predicting side-chain conformations in homology mod- 
eling situations where no information is present in  the template 
structure (e.g., Ala + Val; Pro + Phe). It is notable that  many 
current side-chain placement methods use rotamer libraries depen- 
dent on the local structural environment of side chains (Moult & 
James, 1986; Levitt. 1992; Bower et al., 1997), including those 
used in several  popular  molecular modeling packages, e.g., 
QUANTA (Dunbrack & Karplus, 1993). SYBYL (Schrauber et al.. 
1993), and WHAT-IF (Chinea et al., 1995). 

We have set up a website of the conformational analysis of 
protein side chains (Dunbrack,  1997) as described in this paper. 
The website includes both backbone-independent and backbone- 
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Fig. 6. Average ,y angle $-dependent prior distributions for aromatic side chains The values given for each angle are deviations from 
the canonical values of +60". 180". and -60". viz. ,yI -60". ,yI - 180". and ,yI +60° for the rl  = 1.2.3 rotamers. Arrows indicate ranges 
of syn-pentane interactions between side-chain Cy and backbone atoms. 

dependent analysis as well as "raw" data counts and the Bayesian Although many of the steric effects in backbone-independent 
posterior distributions described here. We have shown graphical and dependent side-chain conformations described in this paper 
representations of our results for several side chains in this paper. have been studied previously in protein structures (Chandraseka- 
On the website we make available the graphical representations ran & Ramachandran, 1970; Cody et al., 1973; Janin et al., 1978; 
for all side-chain types. As the PDB continues to grow, we  will Bhat et al., 1979; Benedetti et al., 1983; James & Sielecki, 1983; 
update the results presented here periodically and place them on McGregor  et al., 1987;  Ponder & Richards,  1987;  Sutcliffe 
the website. et a1.,1987; Tuffery et al., 1991) and by energy calculations (Pon- 
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Fig. 7. Newman projections for conformational analysis of protein side chains. A: Backbone-independent interactions. B: Backbone- 
dependent interactions. Dotted lines mark possible syn-pentane interactions. 

nuswamy & Sasisekharan,  1971; Sasisekharan & Ponnuswamy, 
1971; Lewis et al., 1973; Janin et al., 1978; Zimmerman & Scheraga, 
1978; Gelin & Karplus, 1979; Benedetti et  al., 1983), we believe 
the present analysis is more thorough and consistent in its ap- 
proach. In particular, the conformational analysis of gauche  and 
syn-pentane interactions has provided a simple organizing princi- 
ple for explaining and predicting the effects of backbone confor- 
mation on side-chain conformation that previously has not been 
used extensively on peptides. We hope the library will be useful in 
a number of applications as well as furthering our understanding of 
the determinants of protein conformation and the process of pro- 
tein folding. 

Materials and methods 

Experimental data 

To update the backbone-dependent rotamer library, we obtained a 
list of protein chains with 2.0 8, resolution or better and less than 
50% sequence identity with other chains in the list from the OB- 
STRUCT  server of Heringa et al. (1992). The present library is 
based on 518  chains, which is  four  times larger than the original 
library. The list of proteins used is  available on the Backbone- 
Dependent Rotamer Library Website (Dunbrack,  1997). 

Rotamers r l ,   r2 ,   rg ,  and r4 were defined according to the limits 
on ,y angles listed in Table 1 for each amino acid type. Residues 
with missing backbone atoms necessary to determine #J and @ (i.e., 
the first and last residue of a chain) or with missing side-chain 
atoms were discarded. As in the previous work, we assumed that, 
in crystal structures,  the ,y2 orientations of the His and Asn side 
chains and the x3 orientation of Gln are not uniquely determined 
under a rotation of 180". 

For the raw backbone-independent library, we used the  limits  in 
Table 1 to count the number of side chains with rl,r2,r3,r4 = 
i,j,k,l for all side-chain types. These numbers, Yi jk l ,  can be used to 
calculate various raw conditional probabilities, 

j ,  k, 1 

Yi jkl  
i ,  1 

p ( r g  = klr2 = j )  = Pkl ,  = - 
Yijkl  

1 ,  k, 1 

which will be used in the Bayesian analysis. 
To be consistent with our previous work (Dunbrack & Karplus, 

1993, 1994), we first calculated a "raw" count of each rl in 20" by 
20" #J,@ bins centered 10" apart (- 1 80", - 170", . . ., 0", ..., 1 60", 
170") in #J and @. Each sidechain is counted four times in such a 
procedure. Mathematically, we can define a function Wbox for a 
bin centered at ( # J o , @ b )  that is applied to all side chains with 
rotamer rl = i ,  such that 

where Adm = #Jm - #Ja and AGm = $I,,, - @b. Wbox = 1 if both 
A#Jm and A@m are less than 10"; W box = 0 otherwise. The function 

is  shown  in  Figure 2 for { # J a , @ b )  = { -60", -60'1. The 
corresponding probabilities are denoted = y$z/z jry:Tzb. 

To provide estimates  for  the underpopulated and unpopulated 
regions of the map, we used a Gaussian weighted periodic function 
to count rotamers. Side chains were counted for each rl  rotamer 
type with the following weight function in #J,@ bins centered 10" 
apart (-180", -170", ..., 0". ..., 170"): 

w box 
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Table 4. Conformational analysis of backbone-independent interactions: Single Cy, single C6 (Met, Glu, Gln, Arg, Lys) 

Met, Glu, Gln, Arg, Lys rlr2 rotamers 
- - 

N-Ca-CP-Cy XI g+ E?+ g+ t t t g g g 
C-Ca-CP-Cy  x,-120" &? g g g+  g+ g+  t t t 

x2 g+ t g g+  t g g+  t g 

- - 

- 
Ca-CP-Cy-CS 

- 

P P 
P 

Eb 
A E  

CHARMM AE' 2.66 0.00 2.44 0.42 0.00 2.28 1.91 0.00 0.42 

Argd 
Met 
Gln 
Glu 
LY s 

5.1 91.9 3.1 15.7 80.1 4.2 4.2 75.7 20.2 
6.3 89.2 4.6 30.4 62.5 7.1 1.7 58.7 39.6 
8.6 73.5 17.9 33.4 60.6 6.0 7.1 62.9 30.0 
5.3 65.3 29.4 21.7 72.1 6.2 13.4 60.6 26.1 
5.9 88.5 5.7 18.2 76.5 5.4 6.5 69.3 24.2 

N-Ca-CP-Cy1 

N-Ca-CP-Cy2 
C-Ca-CP-Cy1 
C-Ca-CP-Cy2 

Ca-CP-Cyl-CG 

C-Ca-CP-Cy 1 -C6 
N-Ca-CP-Cyl-CS 

E 
AE 

CHARMM A E  

Ile 

XI 

XI-120" 
XI - 120" 
XI + 120" 

x2 

XI 7 x 2  

xI-12oo,Xz 

t 

f 

g- 

t 
t 
g+  

g +  

P 

g 

t 
t 
g+ 

t 

P 

P + 4g 
P + g  

1.93 

9.4 

0.00 2.5 1 0.00 

89.4 1.2 31.2 

3g 

0.23 

66.4 

P 

P + 4g 
P + g  

2.42 

2.6 

P + 3g 
P + g  

1.95 

3.5 

0.00 

76.2 

0.18 

20.4 

P 
P 

P 

P 
P 

P 
P 

E 
A E  

p + 3 g   p + 3 g   2 p + 4 g  2g p + 2 g   p + 3 g   p + 2 g  2g p + 3 g  
P + g  P P + g  P P + g  

CHARMM A E  0.25 0.00 2.77 0.00 1.94 2.09 1.78 0.00 1.97 

Leu p(r2Ir1) 55.9 41.3 2.8 84.4 12.2 3.3 13.3 83.7 3.1 

a"p" denotes a syn-pentane interaction between the atom 1 and 5 of the listed in the first column. 
bAs  a rough estimate, one gauche ("g") interaction is - 0.9 kcal/mol; p - 1.5 kcal/mol, based on pentane ab initio calculations (Wiberg & Murcko, 

'CHAR" energies are given relative to the lowest r2 rotamer for each r l  rotamer. 
dExperimental data for the conditional probabilities, p(r21rI). 

1988). 

Y$; = x exp(-kl  sin2(A+m) - k, sin2(AtJm)) 
sidechains m 

with rl = t  

x e x p ( - ( T > z  - (Fr). 
k ,  is a constant that determines the width of the function about 
( C#J~,&) and k2 determines the ratio of the peak heights at { &.t,hb}, 

(7) We used values of kl = 20 and k2 = 2.0 radians. This function is 
also plotted in Figure 2 for ( f,ba.#b} = ( -6O",-60"}. The corre- 

(4'0 5 1 8 O o , @ b } ,   ( 4 ' 0 , t ) b  2 180"), and 5 1 8 0 " ,  $!fb ? 180"}. 
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Fig. 8. CHARMM calculations of backbone-conformation independent backbone-side-chain interactions. A: Ape. B: Phe. 

sponding probabilities, p::; were calculated by normalizing Equa- Bayesian statistical analysis 
tion 7 for each (bo,+b pair, 0;:; = y $ : ~ / Z i r y ~ ~ ~ , , .  

used in the Bayesian analysis. This function is a product of W p e r  We derive a library used for predictions of side-chain rotmers 
and Wbux.  It counts  side  chains with an approximately Gaussian from the PDB by a Bayesian statistics analysis (Gelman et d., 
weight in the neighborhood of each (b,+ point. But because of the 1995). In this section, we describe Bayesian statistical analysis 
box function Wb"x, side chains with A(b or A+ greater than 10" are briefly; further details for the rotarner library are described below. 
not counted by W n o n - p r r  (see Fig. 2). We follow the notation of Gelman et al. (1995). We are considering 

We used a third function, W n"n-ppr to count rotamers for the data Rotamer statistics 

Table 5. Conformational analysis of backbone-dependent  interactions 

Atoms Connecting dihedrals Interaction: -90" --f O", g+  Interaction: 0" -+ 9W.g 

1 2 3 4 5 1-2-3-4 2-3-4-5 1-2-3-4 = -90" + 0" 2-3-4-5 = g+ 1-2-3-4 = 0" + 90" 2-3-4-5 = g- 

N C a  Cp Cy 
N C a  C p  Cy 
c ca cp c y  
c C a  cp c y  

N C a  C p  Cy2 
N C a  C p  Cy2 
c ca cp c y 2  
c C a  cp c y 2  

N C a  Cp Cy2 
N C a  C p  Cy2 
c ca cp c y 2  
c ca cp c y 2  

All Cy, Cys Sy, Ser Oy, Val Cyl,  Ile Cyl, Thr Oyl 
4-120" XI 4 = 30" -+ 120" rl = g+  
4+60" X I  4 = - 150" -+ -60" rl = g+  
4!/+120" X I  -120" IC, = 150"- 240" r I  = t 
4-60" X I  -120" I I ,  = -30"- 60" rl = t 

Val Cy2 
4-120" ~ 1 + 1 2 0 "  4 =  30"- 120" rl = g- 
4+60" ~ 1 + 1 2 0 "  4 = -150"-+ -60" rl = g- 
*+120" X ,  4!/ = 150" + 240" rl = g+  
4!/-60" X I  I )  = -30"- 60" rl = g+  

Ile Cy2 and Thr Cy2 
4-120"  XI-120" 4 =  30"- 120" 
4+60" XI-120" 4 -150" + -60" 
4+120"  ~1+120" 4 = 150" + 240" 
4!/-60" ~ 1 + 1 2 0 "  I//= -30"- 60" rl = g-  

rl = t 
rl = t 
r l  = g- 

4 = -240" + - 150" 
@ = -60" + 30" 
I// = -120" + -30" 
CL = 60" + 150" 

4 = -240" -+ - 150" 
4 = -60" -+ 30" 
IC, = - 120" + -30" 
1,9 = 60"- 150" 

4 = -240" -+ - 150" 
= -60" + 30" 

4 = -120"- -30" 
4!/ = 60" + 150" 

rI = g -  
rl  = g -  
rl = g +  
rl  = g +  

rl = t 
r l  = t 
rl = g- 
rl = g-  

rl = g+  
rI = g+ 
rl = t 
rl = f 
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Fig. 9. CHARMM calculations of hackhone-conformation dependent hackhone-sidc-chain interactions. A: Ahu prohahilitics: R: Val 
prohahilities. Prohahilities werc calculated from Equation 2X. assuming kT = 1.0. 

a population of side chains in different states or rotamers. We refer 
to the probabilities of the different rotamers as 0,. so for the three 
rl  rotamers we have 0 , .  0.. and These are superpopulation 
parameters; that is, the probabilities of the three different rotamers 
in a hypothetical infinitely large Protein Data Bank. The observed 
data, yI. y2, and y3. are the numbers of rotamers observed in the 
finite experimental data of the PDB. Unless the total of yI + y2 + 
v 3  = N is large (>50), the observed populations y J N  may differ 
somewhat from the 0,. Bayesian analysis provides a method for 
calculating a probability distribution of thc parameters 0 based on 
the ohserved data y, where 0 and y are vectors with m components 
(m = 3 in this example). 

We start with the joint probnbilir?. distribution for 0 and y writ- 
ten with Bayes' rule as the product of a prior distribution p ( 0 )  and 
the likelihood or santplin,? distribution p(V 0). 

p(0.v) = P(o)P(vlo) .  (8) 

The prior distribution contains any information we may have about 
the expected value of 0 in the form of a probability density over the 
acceptable values of 0. We are looking for an expression forp(BI>I), 
which is the probability distribution of the parameters of interest, 
B,  conditioned on the observed experimental data. y. Using Bayes' 
rule again. such that, p(0.y) = p(v)p(eIy), we find, 

Because y is fixed, we can write the posterior distribution p(8lv) 
as proportional to the unnormalized posterior densie. 

So if we have some guess for the prior distribution p ( 0 )  and a 
model for the likelihood function p(vl0) for the probability of the 
data given values for the parameters, we  can derive a posterior 
probability distribution for the parameters, p(Ol>v). 

There is a distinction in Bayesian statistics between hformative 
and noninfonnative prior distributions. Noninformative prior dis- 
tributions are usually flat functions of the parameters 0. Informa- 
tivc prior distributions are defined by probabilities that are higher 
in certain ranges of the parameters 0 where we expect the value of 
0 to lie, and probabilities that are lower in less likely ranges. 

For the rotamer problem, we use a multinomial model, such that 
thc likelihood takes the form 

where v,, = x,= I y,, the sum of the counts of the different rotamers, 
and C,B, = 1. We use a conjugate prior distribution [a prior dis- 
tribution that has a similar mathematical form to the sampling 
distribution (Equation 1 I ) ]  called the Dirichlet distribution, 
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Table 6. P-values and  prediction  rates for 
backbone-dependent  mtamers 

Residue N 
1 st  2nd 3rd 

prediction" prediction prediction N binsb  p-value 

Asn 
ASP 
CYS 
Gln 
Glu 
His 
Ile 
Leu 
LY s 
Met 
Phe 
Ser 
Thr 
Trp 
5 r 
Val 

All 

4,572 
5,169 
6,575 
1,800 
3,833 
6,032 
2,270 
5,792 
8,587 
6,176 
2,068 
4,348 
6,906 
6,539 
1,632 
4,042 
7,576 

83,917 

64.7 30.0 5.4 
70.3 23.7 6.1 
74.9 18.9 6.2 
70.5 25.6 3.9 
66.2 28.6 5.2 
61.8 32.2 6.0 
71 .5 24.2 4.3 
86.7 9.6 3.7 
73.9 25.1 1 .o 
67.1 28.2 4.7 
70.1 26.2 3.8 
76.4 21.2 2.4 
62.5 26.6 10.9 
83.9 11.1 5.0 
68.9 26.4 4.7 
74.2 22.6 3.2 
84.3 9.6 6.1 

73.0 22.0 5.0 

155 
222 
229 
113 
146 
162 
149 
139 
166 
181 
1 0 4  
167 
194 
166 
101 
156 
148 

0.56 
0.50 
0.54 
0.66 
0.52 
0.46 
0.65 
0.56 
0.65 
0.50 
0.64 
0.73 
0.44 
0.48 
0.62 
0.66 
0.4 1 

~ 

~ 

aPrediction rates determined by thep(r l  for all side chains in the 
database. First prediction is made based on the highest probability rl ro- 
tamer from the appropriate c$,+ bin; second prediction is the next highest 
probability; third prediction is based on the lowest probability rl rotamer. 

bNumber of bins with v " " " ~ P p r  > I O  used to calculate the p-values in the 
last column. 

where x. = C . , , , x i .  Note that for an integer T(n + 1) = n ! .  The 
values of the hyperparameters xi that define the prior distribution 
can be thought of as estimated counts for the rotamers in some 
sample of side  chains of size xo.' These estimates can come from 
any source, including previous data or some pooling of the present 
data.  The total number of prior counts, xo, can be scaled to any 
value to alter the dependence of the posterior distribution on the 
prior distribution. The larger x. is, the more precise the prior dis- 
tribution is, and the closer the posterior density is to values near 
8, = x;/xo, The posterior distribution that results from Equations 1 1  
and 12 is  also Dirichlet with parameters x, + y; + 1 ,  i.e., 

The use of the conjugate prior distribution results in the analyt- 
ical form of the posterior distribution (Equation 13) and also there- 

' We use the notation from the following table for the counts and pro- 
portions for the prior, data, and posterior distributions: 

Prior Data Posterior 

fore simple expressions for the expectation values for the 8,. their 
variances, covariances, and modes: 

xi + y;  + 1 

x0 + Yo + m 

xi + Y !  
x0 + Yo 

x o + y o + m + l  

where m is  the number of rotamers under consideration ( i  = 
1,2,. . . ,m) .  

Bayesian simulation of the posterior distribution 
Bayesian inference is frequently performed by means of simu- 

lation, especially when prior distributions and sampling distribu- 
tions are complicated and do not produce an analytical posterior 
distribution. We use such a technique as a means for finding the 
best prior distribution. 

To check our models against the experimental data, it  is useful 
to make predictions of the data from the posterior distribution of 
the parameters. We refer to these as yreP,' for 1 = 1,2,3,. . . ,L for L 
draws from the posterior distribution. To perform simulations, we 
first draw values for Or''".' from a Dirichlet distribution with pa- 
rameters x, + y ,  + l and then draw yr'P,' from the multinomial 
likelihood function, Equation 1 1 .  With the yrpP in hand, we can 
evaluate our models with the calculation of p-values within the 
Bayesian statistics framework. Because Bayesian inference is per- 
formed over the entire posterior distribution of the parameters, 
rather than just a point value as in classical statistics, we calculate 
the proportion of simulation draws where the replicated data are 
more extreme than the experimental data, 

1 L  

p - value = A I(T(yrP./,f3"P,') 2 T ( y , f F " ' ) } ,   ( 1 5 )  
L / = I  

where the indicator function I = 1 if the expression inside  is true 
and 0 otherwise. T is the test statistic, which is a function of both 
y and 8. We use a ,y discrepancy, which is similar to the classical 
,y goodness-of-fit measure, 

where the sum is over the different rotamer types and y is either 
from the experimental data or the replicated data. 

Rotamer  libraries derived  from Bayesian  statistical  analysis 

Backbone-independent rotamer library 
For the backbone-independent rotamer library, we use informa- 

tive prior distributions of the form, 

c r ' , , ' , k ' , / '  J 
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K is a scale  factor that affects the influence of the prior distribution 
on the posterior distribution by setting the value of x0 in Equa- 
tion 12 proportional to the  number of side chains yo in the exper- 
imental data with rl = i. For larger values of K, the prior distribution 
exerts a stronger pull on  the experimental data. 

Because some of the rotamer types are not seen at all in the 
limited data  set, we would like some estimate of their probability, 
beyond the  crude noninformative distribution result. Higher values 
of K are therefore desirable. We do not know for  sure how good 
our prior distribution is and the resulting posterior distribution 
(which is  the  goal)  is dependent on it. So we test the posterior 
distributions using the Bayesian version of the x 2  test by simu- 
lating draws, @rep, from the posterior distributions from a range of 
values for K and y from the likelihood functions. The resulting 
p-values indicate what fraction of the sample draws yielded a value 
of the test x function that were larger than the value for  the actual 
data sample. Values near 1/2 indicate that the experimental data 
are exactly in the middle of the posterior distribution. Values below 
0.05 and above 0.95 indicate that the data do not appear to come 
from the posterior distribution. 

We divided the data in half and derived backbone-independent 
rotamer libraries from each half database as well as the full data- 
base. For values of K 5 0.5, when the data and posterior distri- 
bution come  from the same data set, the p-values stay within the 
range 0.4-0.7. Using as large a value of K as possible allows us to 
emphasize the prior distribution in  cases where N is small. When 
either half database was used for the posterior distribution and the 
full database was used as the data, the range of p-values was lower, 
but they increased to more median levels as K was increased. This 
indicates that, for situations with less experimental data (the half 
databases), the posterior distribution should rely heavily on an 
informative prior distribution. We found a value of K = 0.5 to be 
optimal. This is a useful guideline for the more complicated case 
of the backbone-dependent distributions, where there is much less 
data per parameter than in the backbone-independent case. 

Backbone-dependent rotamer  library 

We would like to determine a backbone-dependent library that is 
continuous  over the full Ramachandran map and that provides 
good estimates for regions that are only weakly populated or even 
unpopulated in the PDB. We can check the model in various ways 
to ensure that the populated regions are represented accurately. 

In our prior distribution, we postulate that 

In practice, a robust estimate of prior distribution  parameters 
p( r I  = il4,) = ailo andp(r l  = i(+b) 5 (Yjlb can be obtained from 
a loglinear model of the data probabilities p(r l  = il4,,rclb) = 
P$% 7 

This is an overdetermined problem, because there are 36 X 36 
values on  the left-hand side to be expressed as a linear combination 
of 72 values on the right-hand side. The matrix equation can be 
solved by singular value decomposition (SVD), and is guaranteed 
to  be the best solution of the overdetermined problem in the least- 
squares sense (Press et al., 1988). 

The two-dimensional prior distribution is a Dirichlet function at 
each value of 4 = and I) = $b, 

where the 4- and +-dependent probabilities are determined from 
the SVD equations (Equations 18 and 19) with the 4, +-dependent 
data obtained with weighting function Wper. We use a value for 
Xolab in a limited range, such that 

KYOlab 2o 

I100 loo KYOlab 

where K is whatever proportionality constant we choose. 

backbone-independent case, 
The posterior  distribution then is also  Dirichlet,  as  in  the 

with Y,lab obtained from the nonperiodic function, Wnon-per. The 
use of W n o n - p e r  here minimizes the effect of the periodic function 
in populated regions of the map. To test how well the posterior 
distributions represent the data in the occupied regions of the Ra- 
machandran map, we calculated the p-values for the distributions 
for all side chains with the results listed in Table 6. 

The full rotamer  library 
Given the strong dependence of the xI rotamer probabilities on 

the backbone dihedrals and $ and  the lack of dependence of r2 
on 4 and + (see Results), we present the backbone-dependent 
rotamer library as the conditional probabilities of X ,  rotamers given 
the values of the backbone dihedrals 4 and $, p(r l  /4,+). The full 
rotamer library is formed by combining (and normalizing) the 
conditional backbone-independent probabilities for r2,  r3, r4 with 
P('I 14, *), 

p ( r l  = i ,r2 = j , r 3  = k,r4 = 114 = ba,$ = &) 

x Angle averages 
x angle averages were determined from a Bayesian analysis 

using a normal model for both the  prior and posterior distributions. 
We are  looking  for  average x angles as a function of 4 and + for 
all rotamer combinations, e.g., for Lys, values for X I  , z 2 , z 3 , j 4  - 
~ $ ~ , + b , r ~ ,  r2,r3,r4, There  is not sufficient information in the PDB 
to determine this many parameters, so we determine only a subset 
of these values, assuming, for instance, that X 3  and j 3  are  inde- 
pendent of 4 and +. 

In Table 7, we list the parameters that were used in  the prior and 
posterior distributions for the x angle averages. Generally, we 
expect that each x angle's distribution is affected only by its ro- 
tameric state and the dihedral or rotameric state on  either  side.  This 
is reflected in the choice of prior distribution dependencies. Some 
non-neighboring dependencies are included in the posterior distri- 
butions, in case they are of some relevance in the data analysis. 
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Table 7. Dependence of x angles on backbone dihedrals 
and rotamer types 

Residues 
Posterior 

distribution  Prior  distribution 

Pro 

For each term in the prior distributions, we use a normal distri- 
bution by calculating a mean and variance of the x angle from side 
chains in the database with the given values of 4, #, rl , etc. If we 
have  two different prior distributions for a parameter, p l ( 0 )  and 
p2(0), we can estimate the joint prior distribution as their product, 
p ( 0 )  - pl(0)p2(0). So for instance, in combining the and $ 
dependencies for  Cys, Ser, Val, and Thr, 

where the values of p and u come from the data distribution. By 
completing the square, we find that 

We calculate prior distributions based on the expressions in 
Table 7 and Equation 25 to yield a normal distribution of mean 
Xprior and variance u&,~. The posterior distribution is then calcu- 
lated by adding in the data with all the correct rotameric states as 
defined in Table 7, yielding values for jp0,, and u,',,,. The posterior 
distribution is normal, 

p(elY) = ~ ( ~ I X p o s r ~ ~ , L ) ~  (26) 

where 

The assumption that dihedral averages depend only on the neigh- 
boring rotameric states can be tested by calculating test statistics 
as described above. It should be noted that ujara is the variance in 
the x angle experimental data, whereas a&,, is the variance in the 
mean of the x angle, i.e., an expression of our uncertainty in the 
mean value, not the variance in the  data from an infinitely large 
PDB. 

Molecular mechanics calculations 

We have used the program C H A R "  (Brooks  et al., 1983) to 
calculate the energies of side-chain rotamers in both the backbone- 
independent and backbone-dependent contexts. For all of these 
calculations, we have used the C H A R " 2 2  potential energy func- 
tion, which includes all atoms (polar and nonpolar hydrogens) and 
which has been optimized to represent a variety of intramolecular 
and intermolecular interactions in proteins. The backbone-indepen- 
dent energies were calculated by considering the atoms in a single 
residue fragment consisting of only N, Ccr,  Hcr, C, and the residue 
side-chain. 

Backbone-dependent rotamer preferences were calculated with 
unconstrained x I  (and x2) dihedrals starting from near the likely 
minima (60", 180", -60") by fixing the 4 and # dihedrals of the 
N-acetyl N'-methylamide of each amino acid with force constants 
of 1,000 kcal/mol and minimizing with 1,000 steps of the conju- 
gate gradient minimizer. We placed an oxygen atom bonded to NH 
of each dipeptide in the position of a likely hydrogen bond accep- 
tor. The oxygen was fixed at a distance of 3.0 8, from the backbone 
N and collinear with the NH bond. The dielectric constant E was 
set to 1.0.  In most cases, the minimized x1 values were less than 
35" from the starting conformations. In others, no local minimum 
was found and the final x, value was over 100" from the original 
value. If the minimized dihedral angle value was more than 60" 
away from the initial value, a force constant of 100 kcal/mol was 
applied to the x dihedrals at their initial values, and the minimi- 
zation was repeated. This ensures that the rotamer energies (after 
excluding the constraint energies) and calculated probabilities cor- 
respond to the correct rotamers. 

To remove the influence of the backbone-backbone steric in- 
teractions and to plot the database energies and  CHARMM ener- 
gies, ,!$(4a$b), in a similar way, we invert the Boltzmann calculation, 

The value of kT was set to 1.0. 
Graphical analysis was performed with the Trellis graphics mod- 

ule (Becker & Cleveland, 1996) of the program S-PLUS (Math- 
Soft, 1996). 
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